欧几里得&扩展欧几里得
原博网址:http://www.cnblogs.com/frog112111/archive/2012/08/19/2646012.html
欧几里德算法
欧几里德算法又称辗转相除法,用于计算两个整数a,b的最大公约数。
基本算法:设a=qb+r,其中a,b,q,r都是整数,则gcd(a,b)=gcd(b,r),即gcd(a,b)=gcd(b,a%b)。
第一种证明:
a可以表示成a = kb + r,则r = a mod b
假设d是a,b的一个公约数,则有
d|a, d|b,而r = a - kb,因此d|r
因此d是(b,a mod b)的公约数
假设d 是(b,a mod b)的公约数,则
d | b , d |r ,但是a = kb +r
因此d也是(a,b)的公约数
因此(a,b)和(b,a mod b)的公约数是一样的,其最大公约数也必然相等,得证
第二种证明:
要证欧几里德算法成立,即证: gcd(a,b)=gcd(b,r),其中 gcd是取最大公约数的意思,r=a mod b
下面证 gcd(a,b)=gcd(b,r)
设 c是a,b的最大公约数,即c=gcd(a,b),则有 a=mc,b=nc,其中m,n为正整数,且m,n互为质数
由 r= a mod b可知,r= a- qb 其中,q是正整数,
则 r=a-qb=mc-qnc=(m-qn)c
b=nc,r=(m-qn)c,且n,(m-qn)互质(假设n,m-qn不互质,则n=xd, m-qn=yd 其中x,y,d都是正整数,且d>1
则a=mc=(qx+y)dc, b=xdc,这时a,b 的最大公约数变成dc,与前提矛盾,
所以n ,m-qn一定互质)
则gcd(b,r)=c=gcd(a,b)
得证。
算法的实现:
最简单的方法就是应用递归算法,代码如下:
int gcd(int a,int b)
{
if(b==0)
return a;
return
gcd(b,a%b);
}
代码可优化如下:
int gcd(int a,int b)
{
return b ? gcd(b,a%b) : a;
}
当然你也可以用迭代形式:
int Gcd(int a, int b)
{
while(b != 0)
{
int r = b;
b = a % b;
a = r;
}
return a;
}
扩展欧几里德算法
基本算法:对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然存在整数对 x,y ,使得 gcd(a,b)=ax+by。
证明:设 a>b。
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
2,ab!=0 时
设 ax1+by1=gcd(a,b);
bx2+(a mod b)y2=gcd(b,a mod b);
根据朴素的欧几里德原理有 gcd(a,b)=gcd(b,a mod b);
则:ax1+by1=bx2+(a mod b)y2;
即:ax1+by1=bx2+(a-(a/b)*b)y2=ay2+bx2-(a/b)*by2;
根据恒等定理得:x1=y2; y1=x2-(a/b)*y2;
这样我们就得到了求解 x1,y1 的方法:x1,y1 的值基于 x2,y2.
上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
扩展欧几里德的递归代码:
<pre name="code" class="cpp">int exgcd(int a,int b,int &x,int &y)
{
if(b==0)
{
x=1;
y=0;
return a;
}
int r=exgcd(b,a%b,x,y);
int t=x;
x=y;
y=t-a/b*y;
return r;
}
扩展欧几里德非递归代码:
int exgcd(int m,int n,int &x,int &y)
{
int x1,y1,x0,y0;
x0=1; y0=0;
x1=0; y1=1;
x=0; y=1;
int r=m%n;
int q=(m-r)/n;
while(r)
{
x=x0-q*x1; y=y0-q*y1;
x0=x1; y0=y1;
x1=x; y1=y;
m=n; n=r; r=m%n;
q=(m-r)/n;
}
return n;
}
扩展欧几里德算法的应用主要有以下三方面:
(1)求解不定方程;
(2)求解模线性方程(线性同余方程);
(3)求解模的逆元;
(1)使用扩展欧几里德算法解决不定方程的办法:
对于不定整数方程pa+qb=c,若 c mod Gcd(p, q)=0,则该方程存在整数解,否则不存在整数解。
上面已经列出找一个整数解的方法,在找到p * a+q * b = Gcd(p, q)的一组解p0,q0后,p * a+q * b = Gcd(p, q)的其他整数解满足:
p = p0 + b/Gcd(p, q) * t
q = q0 - a/Gcd(p, q) * t(其中t为任意整数)
至于pa+qb=c的整数解,只需将p * a+q * b = Gcd(p, q)的每个解乘上 c/Gcd(p, q) 即可。
在找到p * a+q * b = Gcd(a, b)的一组解p0,q0后,应该是得到p * a+q * b = c的一组解p1 = p0*(c/Gcd(a,b)),q1 = q0*(c/Gcd(a,b)),
p * a+q * b = c的其他整数解满足:
bool linear_equation(int a,int b,int c,int &x,int &y)
{
int d=exgcd(a,b,x,y);
if(c%d)
return false;
int k=c/d;
x*=k; y*=k; //求得的只是其中一组解
return true;
}
(2)用扩展欧几里德算法求解模线性方程的方法:
同余方程 ax≡b (mod n)对于未知数 x 有解,当且仅当 gcd(a,n) | b。且方程有解时,方程有 gcd(a,n) 个解。
求解方程 ax≡b (mod n) 相当于求解方程 ax+ ny= b, (x, y为整数)
设 d= gcd(a,n),假如整数 x 和 y,满足 d= ax+ ny(用扩展欧几里德得出)。如果 d| b,则方程
a* x0+ n* y0= d, 方程两边乘以 b/ d,(因为 d|b,所以能够整除),得到 a* x0* b/ d+ n* y0* b/ d= b。
所以 x= x0* b/ d,y= y0* b/ d 为 ax+ ny= b 的一个解,所以 x= x0* b/ d 为 ax= b (mod n ) 的解。
ax≡b (mod n)的一个解为 x0= x* (b/ d ) mod n,且方程的 d 个解分别为 xi= (x0+ i* (n/ d ))mod n {i= 0... d-1}。
设ans=x*(b/d),s=n/d;
方程ax≡b (mod n)的最小整数解为:(ans%s+s)%s;
相关证明:
证明方程有一解是: x0 = x'(b/d) mod n;
由 a*x0 = a*x'(b/d) (mod n)
a*x0 = d (b/d) (mod n) (由于 ax' = d (mod n))
= b (mod n)
证明方程有d个解: xi = x0 + i*(n/d) (mod n);
由 a*xi (mod n) = a * (x0 + i*(n/d)) (mod n)
= (a*x0+a*i*(n/d)) (mod n)
= a * x0 (mod n) (由于 d | a)
= b
首先看一个简单的例子:
5x=4(mod3)
解得x = 2,5,8,11,14.......
由此可以发现一个规律,就是解的间隔是3.
那么这个解的间隔是怎么决定的呢?
如果可以设法找到第一个解,并且求出解之间的间隔,那么就可以求出模的线性方程的解集了.
我们设解之间的间隔为dx.
那么有
a*x = b(mod n);
a*(x+dx) = b(mod n);
两式相减,得到:
a*dx(mod n)= 0;
也就是说a*dx就是a的倍数,同时也是n的倍数,即a*dx是a 和 n的公倍数.为了求出dx,我们应该求出a 和 n的最小公倍数,此时对应的dx是最小的.
设a 和 n的最大公约数为d,那么a 和 n 的最小公倍数为(a*n)/d.
即a*dx = a*n/d;
所以dx = n/d.
因此解之间的间隔就求出来了.
代码如下:
bool modular_linear_equation(int a,int b,int n)
{
int x,y,x0,i;
int d=exgcd(a,n,x,y);
if(b%d)
return false;
x0=x*(b/d)%n; //特解
for(i=1;i<d;i++)
printf("%d\n",(x0+i*(n/d))%n);
return true;
}
(3)用欧几里德算法求模的逆元:
同余方程ax≡b (mod n),如果 gcd(a,n)== 1,则方程只有唯一解。
在这种情况下,如果 b== 1,同余方程就是 ax=1 (mod n ),gcd(a,n)= 1。
这时称求出的 x 为 a 的对模 n 乘法的逆元。
对于同余方程 ax= 1(mod n ), gcd(a,n)= 1 的求解就是求解方程
ax+ ny= 1,x, y 为整数。这个可用扩展欧几里德算法求出,原同余方程的唯一解就是用扩展欧几里德算法得出的 x 。
欧几里得&扩展欧几里得的更多相关文章
- Intel Code Challenge Final Round (Div. 1 + Div. 2, Combined) C.Ray Tracing (模拟或扩展欧几里得)
http://codeforces.com/contest/724/problem/C 题目大意: 在一个n*m的盒子里,从(0,0)射出一条每秒位移为(1,1)的射线,遵从反射定律,给出k个点,求射 ...
- UVA 12169 Disgruntled Judge 枚举+扩展欧几里得
题目大意:有3个整数 x[1], a, b 满足递推式x[i]=(a*x[i-1]+b)mod 10001.由这个递推式计算出了长度为2T的数列,现在要求输入x[1],x[3],......x[2T- ...
- UVA 10090 Marbles 扩展欧几里得
来源:http://www.cnblogs.com/zxhl/p/5106678.html 大致题意:给你n个球,给你两种盒子.第一种盒子每个盒子c1美元,可以恰好装n1个球:第二种盒子每个盒子c2元 ...
- POJ 1061 青蛙的约会 扩展欧几里得
扩展欧几里得模板套一下就A了,不过要注意刚好整除的时候,代码中有注释 #include <iostream> #include <cstdio> #include <cs ...
- 【64测试20161112】【Catalan数】【数论】【扩展欧几里得】【逆】
Problem: n个人(偶数)排队,排两行,每一行的身高依次递增,且第二行的人的身高大于对应的第一行的人,问有多少种方案.mod 1e9+9 Solution: 这道题由1,2,5,14 应该想到C ...
- poj 2891 扩展欧几里得迭代解同余方程组
Reference: http://www.cnblogs.com/ka200812/archive/2011/09/02/2164404.html 之前说过中国剩余定理传统解法的条件是m[i]两两互 ...
- poj 2142 扩展欧几里得解ax+by=c
原题实际上就是求方程a*x+b*y=d的一个特解,要求这个特解满足|x|+|y|最小 套模式+一点YY就行了 总结一下这类问题的解法: 对于方程ax+by=c 设tm=gcd(a,b) 先用扩展欧几里 ...
- poj 1061 扩展欧几里得解同余方程(求最小非负整数解)
题目可以转化成求关于t的同余方程的最小非负数解: x+m*t≡y+n*t (mod L) 该方程又可以转化成: k*L+(n-m)*t=x-y 利用扩展欧几里得可以解决这个问题: eg:对于方程ax+ ...
- Codeforces7C 扩展欧几里得
Line Time Limit: 1000MS Memory Limit: 262144KB 64bit IO Format: %I64d & %I64u Submit Status ...
随机推荐
- 如何使用 Quagga BGP(边界网关协议)路由器来过滤 BGP 路由
在之前的文章中,我们介绍了如何使用 Quagga 将 CentOS 服务器变成一个 BGP 路由器,也介绍了 BGP 对等体和前缀交换设置.在本教程中,我们将重点放在如何使用前缀列表prefix-li ...
- 使用Jsoup 抓取页面的数据
需要使用的是jsoup-1.7.3.jar包 如果需要看文档我下载请借一步到官网:http://jsoup.org/ 这里贴一下我用到的 Java工程的测试代码 package com.javen ...
- C语言学习常识
开发环境 学习C语言,在mac os x上,我们选用的开发工具是x-code:而在Windows上,我们一般用微软提供的vc6.0:此外还有很多编辑器内置了或者支持下载C语言的编译器插件.所以,我们可 ...
- .NET笔试题集(一)
1.简述 private. protected. public. internal.protected internal 访问修饰符和访问权限 private : 私有成员, 在类的内部才可以访问. ...
- CSS中相对定位与绝对定位
看了几个讲解定位的博客,觉得还不错,分享之: 博客一:http://blog.sina.com.cn/s/blog_4bcf4a5e010008o0.html 文章中,主要需要参考的有两点: 1,相对 ...
- (转)jQuery Mobile 移动开发中的日期插件Mobiscroll 2.3 使用说明
(原)http://www.cnblogs.com/hxling/archive/2012/12/12/2814207.html jQuery Mobile 移动开发中的日期插件Mobiscroll ...
- Python学习路程day10
Twsited异步网络框架 Twisted是一个事件驱动的网络框架,其中包含了诸多功能,例如:网络协议.线程.数据库管理.网络操作.电子邮件等. 事件驱动 简而言之,事件驱动分为二个部分:第一,注册事 ...
- C#代码示例_定义类
默认情况下,类声明为内部的,即只有当前项目中的代码才能访问它.可以使用internal访问修饰符关键字显示指定. 除了两个访问修饰符关键字(public, internal)外,还可以指定类是抽象的( ...
- 深入学习golang(1)—数组与切片
数据(array)与切片(slice) 数组声明: ArrayType = "[" ArrayLength "]" ElementType . 例如: va ...
- ThreadPoolExecutor机制探索-我们到底能走多远系列(41)
我们到底能走多远系列(41) 扯淡: 这一年过的不匆忙,也颇多感受,成长的路上难免弯路,这个世界上没人关心你有没有变强,只有自己时刻提醒自己,不要忘记最初出发的原因. 其实这个世界上比我们聪明的人无数 ...