poj 3468:A Simple Problem with Integers(线段树,区间修改求和)
Time Limit: 5000MS | Memory Limit: 131072K | |
Total Submissions: 58269 | Accepted: 17753 | |
Case Time Limit: 2000MS |
Description
You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. One type of operation is to add some given number to each number in a given interval. The other is to ask for the sum of numbers in a given interval.
Input
The first line contains two numbers N and Q. 1 ≤ N,Q ≤ 100000.
The second line contains N numbers, the initial values of A1, A2, ... , AN. -1000000000 ≤ Ai ≤ 1000000000.
Each of the next Q lines represents an operation.
"C a b c" means adding c to each of Aa, Aa+1, ... , Ab. -10000 ≤ c ≤ 10000.
"Q a b" means querying the sum of Aa, Aa+1, ... , Ab.
Output
You need to answer all Q commands in order. One answer in a line.
Sample Input
10 5
1 2 3 4 5 6 7 8 9 10
Q 4 4
Q 1 10
Q 2 4
C 3 6 3
Q 2 4
Sample Output
4
55
9
15
Hint
Source
#include <iostream>
#include <stdio.h>
using namespace std; #define MAXN 100010 struct Node{
long long L,R;
long long sum; //当前区间的所有数的和
long long inc; //累加量
}a[MAXN*]; void Build(long long d,long long l,long long r) //建立线段树
{ //初始化当前节点的信息
a[d].L = l;
a[d].R = r;
a[d].inc = ; if(l==r){ //找到叶子节点
scanf("%I64d",&a[d].sum);
return ;
} //建立线段树
long long mid = (l+r)>>;
Build(d<<,l,mid);
Build(d<<|,mid+,r); //更新当前节点的信息
a[d].sum = a[d<<].sum + a[d<<|].sum;
} void Updata(long long d,long long l,long long r,long long v) //更新区间[l,r]的累加量为v
{
if(a[d].L==l && a[d].R==r){ //找到终止节点
a[d].inc += v;
return ;
} long long mid = (a[d].L+a[d].R)/;
a[d].sum += a[d].inc*(a[d].R - a[d].L + ); if(mid>=r){ //左孩子找
Updata(d<<,l,r,v);
}
else if(mid<l){ //右孩子找
Updata(d<<|,l,r,v);
}
else{ //左孩子、右孩子都找
Updata(d<<,l,mid,v);
Updata(d<<|,mid+,r,v);
} a[d].sum = a[d<<].sum + a[d<<|].sum
+ a[d<<].inc*(a[d<<].R - a[d<<].L + )
+ a[d<<|].inc*(a[d<<|].R - a[d<<|].L + );
} long long Query(long long d,long long l,long long r) //查询区间[l,r]的所有数的和
{
if(a[d].L==l && a[d].R==r){ //找到终止节点
return a[d].sum + a[d].inc * (r-l+);
} long long mid = (a[d].L+a[d].R)/;
//更新每个节点的sum
a[d].sum += a[d].inc * (a[d].R - a[d].L + );
a[d<<].inc += a[d].inc;
a[d<<|].inc += a[d].inc;
a[d].inc = ; //Updata(d<<1,a[d<<1].L,a[d<<1].R,a[d].inc);
//Updata(d<<1|1,a[d<<1|1].L,a[d<<1|1].R,a[d].inc); if(mid>=r){ //左孩子找
return Query(d<<,l,r);
}
else if(mid<l){ //右孩子找
return Query(d<<|,l,r);
}
else{ //左孩子、右孩子都找
return Query(d<<,l,mid) + Query(d<<|,mid+,r);
}
a[d].sum = a[d<<].sum + a[d<<|].sum
+ a[d<<].inc*(a[d<<].R - a[d<<].L + )
+ a[d<<|].inc*(a[d<<|].R - a[d<<|].L + );
} int main()
{
long long n,q,A,B;
long long v;
scanf("%I64d%I64d",&n,&q);
Build(,,n);
while(q--){ //q次询问
char c[];
scanf("%s",&c);
switch(c[]){
case 'Q':
scanf("%I64d%I64d",&A,&B);
printf("%I64d\n",Query(,A,B)); //输出区间[A,B]所有数的和
break;
case 'C':
scanf("%I64d%I64d%I64d",&A,&B,&v);
Updata(,A,B,v);
break;
default:break;
}
}
return ;
}
Freecode : www.cnblogs.com/yym2013
poj 3468:A Simple Problem with Integers(线段树,区间修改求和)的更多相关文章
- [POJ] 3468 A Simple Problem with Integers [线段树区间更新求和]
A Simple Problem with Integers Description You have N integers, A1, A2, ... , AN. You need to deal ...
- poj 3468 A Simple Problem with Integers (线段树区间更新求和lazy思想)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 75541 ...
- POJ 3468 A Simple Problem with Integers 线段树区间修改
http://poj.org/problem?id=3468 题目大意: 给你N个数还有Q组操作(1 ≤ N,Q ≤ 100000) 操作分为两种,Q A B 表示输出[A,B]的和 C A B ...
- poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和
A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...
- poj 3468 A Simple Problem with Integers 线段树区间加,区间查询和(模板)
A Simple Problem with Integers Time Limit: 1 Sec Memory Limit: 256 MB 题目连接 http://poj.org/problem?i ...
- poj 3468 A Simple Problem with Integers 线段树区间更新
id=3468">点击打开链接题目链接 A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072 ...
- POJ 3468 A Simple Problem with Integers(线段树,区间更新,区间求和)
A Simple Problem with Integers Time Limit: 5000MS Memory Limit: 131072K Total Submissions: 67511 ...
- (简单) POJ 3468 A Simple Problem with Integers , 线段树+区间更新。
Description You have N integers, A1, A2, ... , AN. You need to deal with two kinds of operations. On ...
- POJ 3468 A Simple Problem with Integers(线段树区间更新)
题目地址:POJ 3468 打了个篮球回来果然神经有点冲动. . 无脑的狂交了8次WA..竟然是更新的时候把r-l写成了l-r... 这题就是区间更新裸题. 区间更新就是加一个lazy标记,延迟标记, ...
- POJ 3468 A Simple Problem with Integers(线段树区间更新,模板题,求区间和)
#include <iostream> #include <stdio.h> #include <string.h> #define lson rt<< ...
随机推荐
- Java中如何解决double和float精度不准的问题
我们知道浮点数是无法在计算机中准确表示的,例如0.1在计算机中只是表示成了一个近似值,因此,对付点数的运算时结果具有不可预知性. 在进行数字运算时,如果有double或float类型的浮点数参与计算, ...
- 前端之常用标签和CSS初识
外层div的宽度是100%,就是视口的大小,当视口被拉窄到小于内层div的宽度980px时,比如800px,此时 外层div宽度为800px,内层div宽度依然为980px,而css中只设置了外层di ...
- HTML——选择器
在前面的章节中,我们展示了一些有关如何选取 HTML 元素的实例. 关键点是学习 jQuery 选择器是如何准确地选取您希望应用效果的元素. jQuery 元素选择器和属性选择器允许您通过标签名.属性 ...
- Hexo
Hexo Hexo is a fast, simple & powerful blog framework powered by Node.js.
- ios 音乐播放,音乐信息显示方法
下面的博客写的很清楚了 http://msching.github.io/blog/page/2/ 主要涉及AVAudioPlayer和下面这几个函数 MPNowPlayingInfoCenter.d ...
- ffmpeg-20160520-git-bin
ESC 退出 0 进度条开关 1 屏幕原始大小 2 屏幕1/2大小 3 屏幕1/3大小 4 屏幕1/4大小 S 下一帧 [ -2秒 ] +2秒 ; -1秒 ' +1秒 下一个帧 -> -5秒 f ...
- Java中的Comparable接口和Comparator接口
Comparator位于包java.util下,比较器,是在集合外部定义排序.Comparable位于包java.lang下,代表当前对象可比较的,是在集合内部实现排序. Comparable代表一个 ...
- mysql-5.6.23-winx64.zip版本安装记录
*操作系统:Win7 64位旗舰版 一.解压至任意目录,此处以“E:\mysql-5.6.23-winx64”为例: 二.设置环境变量:新建变量名 MYSQL_HOME,值为解压的路径 E:\mysq ...
- Python 输入输出
语法注释 输入输出 #语法缩进,4个空格 #注释 #冒号:结尾,缩进的预计视为代码块 #大小写敏感 #输出 print 300 print 'hello','world' #输入 a=raw_inpu ...
- 最喜欢的VS 键盘快捷键摘抄
最喜欢的Visual Studio键盘快捷键(关闭) 336年最喜欢的 425年 你最喜欢的Visual Studio键盘快捷键是什么? 我总是让我的手在键盘上,远离鼠标! 一个请每回答. net ...