题意:给一个 1 到 N 的排列{Ai},询问是否存在 1<=p1<p2<p3<p4<p5<…<pLen<=N(Len>=3),使得 Ap1,Ap2,Ap3,…ApLen 是一个等差序列。

按值建线段树,逐个插入,hash判断。

#include<bits/stdc++.h>
#define N (1<<15)
#define M (l+r>>1)
#define P (k<<1)
#define S (k<<1|1)
#define K l,r,k
#define L l,M,P
#define R M+1,r,S
#define Z \
int l=0,int r=n,int k=1
using namespace std;
int n,q;
typedef unsigned long long ull;
const ull base=23;
ull d[N],u[N],v[N];
void amend(int s,int t,Z){
if(l==r)
u[k]=v[k]=s;
else{
if(t<=M)
amend(s,t,L);
else
amend(s,t,R);
u[k]=u[P]+u[S]*d[M-l+1];
v[k]=v[S]+v[P]*d[r-M];
}
}
ull Q1(int s,int t,Z){
return s==l&&t==r?u[k]:t<=M?Q1(s,t,L):s>M?Q1(s,t,R):Q1(s,M,L)+Q1(M+1,t,R)*d[M-s+1];
}
ull Q2(int s,int t,Z){
return s==l&&t==r?v[k]:t<=M?Q2(s,t,L):s>M?Q2(s,t,R):Q2(M+1,t,R)+Q2(s,M,L)*d[t-M];
}
bool check(){
memset(u,0,sizeof u);
memset(v,0,sizeof v);
static int a[N];
for(int i=0;i!=n;++i)
scanf("%d",a+i);
for(int i=0;i!=n;amend(1,a[i++]))
if(int j=min(a[i]-1,n-a[i]))
if(Q1(a[i]+1,a[i]+j)^Q2(a[i]-j,a[i]-1))
return 1;
return 0;
}
int main(){
d[0]=1;
for(int i=1;i!=N;++i)
d[i]=d[i-1]*base;
for(scanf("%d",&q);q;--q){
scanf("%d",&n);
puts(check()?"Y":"N");
}
}

BZOJ2124: 等差子序列的更多相关文章

  1. bzoj2124: 等差子序列线段树+hash

    bzoj2124: 等差子序列线段树+hash 链接 https://www.lydsy.com/JudgeOnline/problem.php?id=2124 思路 找大于3的等差数列其实就是找等于 ...

  2. [BZOJ2124]等差子序列/[CF452F]Permutation

    [BZOJ2124]等差子序列/[CF452F]Permutation 题目大意: 一个\(1\sim n\)的排列\(A_{1\sim n}\),询问是否存在\(i,j(i<j)\),使得\( ...

  3. BZOJ2124 等差子序列(树状数组+哈希)

    容易想到一种暴力的做法:枚举中间的位置,设该位置权值为x,如果其两边存在权值关于x对称即合法. 问题是如何快速寻找这个东西是否存在.考虑仅将该位置左边出现的权值标1.那么若在值域上若关于x对称的两权值 ...

  4. [bzoj2124]等差子序列_线段树_hash

    等差子序列 bzoj-2124 题目大意:给定一个1~n的排列,问是否存在3个及以上的位置上的数构成连续的等差子序列. 注释:$1\le n\le 10^4$. 想法:这题就相当于是否存在3个数i,j ...

  5. [bzoj2124]等差子序列(hash+树状数组)

    我又来更博啦     2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 941  Solved: 348[Submit][Statu ...

  6. bzoj2124 等差子序列(hash+线段树)

    2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 719  Solved: 261[Submit][Status][Discuss] ...

  7. BZOJ2124:等差子序列(线段树,hash)

    Description 给一个1到N的排列{Ai},询问是否存在1<=p1<p2<p3<p4<p5<…<pLen<=N (Len>=3), 使得A ...

  8. BZOJ2124: 等差子序列(树状数组&hash -> bitset 求是否存在长度为3的等差数列)

    2124: 等差子序列 Time Limit: 3 Sec  Memory Limit: 259 MBSubmit: 2354  Solved: 826[Submit][Status][Discuss ...

  9. [bzoj2124]等差子序列——线段树+字符串哈希

    题目大意 给一个1到N的排列\(A_i\),询问是否存在\(p_i\),\(i>=3\),使得\(A_{p_1}, A_{p_2}, ... ,A_{p_len}\)是一个等差序列. 题解 显然 ...

随机推荐

  1. 通过Ajax实现增删改查

    项目链接:https://github.com/shuai7boy/Ajax_CRUD 简要截图:

  2. 在eclipse中使用第三方库总结

    一.建立user library 导入第三方jar文件,最简单的方式是:右键工程/属性/java build path/add external jars. 另一种方式是:window/prefren ...

  3. RabbitMQ官方中文入门教程(PHP版) 第二部分:工作队列(Work queues)

    工作队列 在第一篇教程中,我们已经写了一个从已知队列中发送和获取消息的程序.在这篇教程中,我们将创建一个工作队列(Work Queue),它会发送一些耗时的任务给多个工作者(Works ). 工作队列 ...

  4. java定时器

    package com.lid;            import java.util.Calendar;      import java.util.Date;      import java. ...

  5. Redis集群(二):Redis的安装

    官方网站:http://redis.io/ 本系列撒使用的版本是:3.0.0 一.安装必要包 yum -yinstall gcc 二.linux下安装及使用(wget下载到当前目录) redis-3. ...

  6. 【CodeVS 3123】高精度练习之超大整数乘法 &【BZOJ 2197】FFT快速傅立叶

    第一次写法法塔,,,感到威力无穷啊 看了一上午算导就当我看懂了?PS:要是机房里能有个清净的看书环境就好了 FFT主要是用了巧妙的复数单位根,复数单位根在复平面上的对称性使得快速傅立叶变换的时间复杂度 ...

  7. 6 this的使用方法

    class Person { String name; void talk() { System.out.println("my name is "+this.name); } } ...

  8. ThreadLocal原理与模拟

    首先用一个程序模拟一下ThreadLocal: public class ThreadLocal1 { private static Dictionary<Thread, Integer> ...

  9. CA 证书

    1.ubuntu curl 命令报错(CA) kamil@vm-ubuntu:~$ curl https://szxyzs.vanke.com/DataCenter/datacenter/api cu ...

  10. 【BZOJ-4521】手机号码 数位DP

    4521: [Cqoi2016]手机号码 Time Limit: 10 Sec  Memory Limit: 512 MBSubmit: 303  Solved: 194[Submit][Status ...