# -*- coding: utf-8 -*-
"""
Created on Sun Nov 13 09:14:13 2016 @author: daxiong
"""
from nltk.stem import PorterStemmer
from nltk.tokenize import sent_tokenize,word_tokenize
#生成波特词干算法实例
ps=PorterStemmer()
'''
ps.stem('emancipation')
Out[17]: 'emancip' ps.stem('love')
Out[18]: 'love' ps.stem('loved')
Out[19]: 'love' ps.stem('loving')
Out[20]: 'love' ''' example_words=['python','pythoner','pythoning','pythoned','pythonly']
example_text="Five score years ago, a great American, in whose symbolic shadow we stand today, signed the Emancipation Proclamation. This momentous decree came as a great beacon light of hope to millions of Negro slaves who had been seared in the flames of withering injustice. It came as a joyous daybreak to end the long night of bad captivity."
#分句
list_sentences=sent_tokenize(example_text)
#分词
list_words=word_tokenize(example_text)
#词干提取
list_stemWords=[ps.stem(w) for w in example_words]
''' ['python', 'python', 'python', 'python', 'pythonli']''' list_stemWords1=[ps.stem(w) for w in list_words]

Stemming words with NLTK

The idea of stemming is a sort of normalizing method. Many
variations of words carry the same meaning, other than when tense is
involved.

The reason why we stem is to shorten the lookup, and normalize sentences.

Consider:

I was taking a ride in the car.
I was riding in the car.

This sentence means the same thing. in the car is the same. I was is
the same. the ing denotes a clear past-tense in both cases, so is it
truly necessary to differentiate between ride and riding, in the case of
just trying to figure out the meaning of what this past-tense activity
was?

No, not really.

This is just one minor example, but imagine every word in the English
language, every possible tense and affix you can put on a word. Having
individual dictionary entries per version would be highly redundant and
inefficient, especially since, once we convert to numbers, the "value"
is going to be identical.

One of the most popular stemming algorithms is the Porter stemmer, which has been around since 1979.

First, we're going to grab and define our stemmer:

from nltk.stem import PorterStemmer
from nltk.tokenize import sent_tokenize, word_tokenize ps = PorterStemmer()

Now, let's choose some words with a similar stem, like:

example_words = ["python","pythoner","pythoning","pythoned","pythonly"]

Next, we can easily stem by doing something like:

for w in example_words:
print(ps.stem(w))

Our output:

python
python
python
python
pythonli

Now let's try stemming a typical sentence, rather than some words:

new_text = "It is important to by very pythonly while you are pythoning with python. All pythoners have pythoned poorly at least once."
words = word_tokenize(new_text)

for w in words:
print(ps.stem(w))

Now our result is:

It
is
import
to
by
veri
pythonli
while
you
are
python
with
python
.
All
python
have
python
poorli
at
least
onc
.

Next up, we're going to discuss something a bit more advanced from the NLTK module, Part of Speech tagging, where we can use the NLTK module to identify the parts of speech for each word in a sentence.

 

自然语言14_Stemming words with NLTK的更多相关文章

  1. 自然语言处理(1)之NLTK与PYTHON

    自然语言处理(1)之NLTK与PYTHON 题记: 由于现在的项目是搜索引擎,所以不由的对自然语言处理产生了好奇,再加上一直以来都想学Python,只是没有机会与时间.碰巧这几天在亚马逊上找书时发现了 ...

  2. 自然语言23_Text Classification with NLTK

    QQ:231469242 欢迎喜欢nltk朋友交流 https://www.pythonprogramming.net/text-classification-nltk-tutorial/?compl ...

  3. 自然语言20_The corpora with NLTK

    QQ:231469242 欢迎喜欢nltk朋友交流 https://www.pythonprogramming.net/nltk-corpus-corpora-tutorial/?completed= ...

  4. 自然语言19.1_Lemmatizing with NLTK(单词变体还原)

    QQ:231469242 欢迎喜欢nltk朋友交流 https://www.pythonprogramming.net/lemmatizing-nltk-tutorial/?completed=/na ...

  5. 自然语言13_Stop words with NLTK

    https://www.pythonprogramming.net/stop-words-nltk-tutorial/?completed=/tokenizing-words-sentences-nl ...

  6. 自然语言处理2.1——NLTK文本语料库

    1.获取文本语料库 NLTK库中包含了大量的语料库,下面一一介绍几个: (1)古腾堡语料库:NLTK包含古腾堡项目电子文本档案的一小部分文本.该项目目前大约有36000本免费的电子图书. >&g ...

  7. python自然语言处理函数库nltk从入门到精通

    1. 关于Python安装的补充 若在ubuntu系统中同时安装了Python2和python3,则输入python或python2命令打开python2.x版本的控制台:输入python3命令打开p ...

  8. Python自然语言处理实践: 在NLTK中使用斯坦福中文分词器

    http://www.52nlp.cn/python%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80%E5%A4%84%E7%90%86%E5%AE%9E%E8%B7%B5-% ...

  9. 推荐《用Python进行自然语言处理》中文翻译-NLTK配套书

    NLTK配套书<用Python进行自然语言处理>(Natural Language Processing with Python)已经出版好几年了,但是国内一直没有翻译的中文版,虽然读英文 ...

随机推荐

  1. webpack进阶之插件篇

    一.插件篇 1. 自动补全css3前缀 autoprefixer 官方是这样说的:Parse CSS and add vendor prefixes to CSS rules using values ...

  2. asp.net mvc输出自定义404等错误页面,非302跳转。

    朋友问到一个问题,如何输出自定义错误页面,不使用302跳转.当前页面地址不能改变. 还要执行一些代码等,生成一些错误信息,方便用户提交反馈. 500错误,mvc框架已经有现成解决方法: filters ...

  3. Hibernate断网修改配置文件实现正常验证运行

    hibernate.cfg.xml中声明部分: <!DOCTYPE hibernate-configuration PUBLIC"-//Hibernate/Hibernate Conf ...

  4. Asp.Net MVC<一> : 三层架构、MVC

    MVC.MVP.MVVM.Angular.js.Knockout.js.Backbone.js.React.js.Ember.js.Avalon.js.Vue.js 概念摘录 认清Android框架 ...

  5. quartz介绍

    Quartz 是一个开源的作业调度框架,它完全由 Java 写成,并设计用于 J2SE 和 J2EE 应用中.它提供了巨大的灵活性而不牺牲简单性.你能够用它来为执行一个作业而创建简单的或复杂的调度.本 ...

  6. pycharm实用快捷键

    提示 CTRL Q: 在参数列表位置,显示可以输入的所有参数. CTRL Q: 查看选中方法的文档字符串 阅读 CTRL -: 折叠当前代码 CTRL +: 展开当前代码 CTRL SHIFT -: ...

  7. Python列表、元组、字典和字符串的常用函数

    Python列表.元组.字典和字符串的常用函数 一.列表方法 1.ls.extend(object) 向列表ls中插入object中的每个元素,object可以是字符串,元组和列表(字符串“abc”中 ...

  8. jsp动态include和静态Include

    动态 INCLUDE 用 jsp:include 动作实现 <jsp:include page="included.jsp" flush="true" / ...

  9. js-JavaScript高级程序设计学习笔记15

    第十七章 错误处理与调试 1.try-catch语句.如果try块中的任何代码发生了错误,就会立即退出执行开始执行catch块.必须要给catch的错误对象起名字.不同浏览器都有一个message属性 ...

  10. 【BZOJ-3784】树上的路径 点分治 + ST + 堆

    3784: 树上的路径 Time Limit: 10 Sec  Memory Limit: 256 MBSubmit: 462  Solved: 153[Submit][Status][Discuss ...