【机器学习算法-python实现】决策树-Decision tree(1) 信息熵划分数据集
(转载请注明出处:http://blog.csdn.net/buptgshengod)
1.背景
决策书算法是一种逼近离散数值的分类算法,思路比較简单,并且准确率较高。国际权威的学术组织,数据挖掘国际会议ICDM
(the IEEE International Conference on Data Mining)在2006年12月评选出了数据挖掘领域的十大经典算法中,C4.5算法排名第一。C4.5算法是机器学习算法中的一种分类决策树算法,其核心算法是ID3算法。
算法的主要思想就是将数据集依照特征对目标指数的影响由高到低排列。行成一个二叉树序列,进行分类,例如以下图所看到的。
如今的问题关键就是,当我们有非常多特征值时,哪些特征值作为父类写在二叉树的上面的节点,哪下写在以下。我们能够直观的看出上面的特征值节点应该是对目标指数影响较大的一些特征值。那么怎样来比較哪些特征值对目标指数影响较大呢。这里引出一个概念,就是信息熵。
信息理论的鼻祖之中的一个Claude
E. Shannon把信息(熵)定义为离散随机事件的出现概率。说白了就是信息熵的值越大就表明这个信息集越混乱。
信息熵的计算公式,(建议去wiki学习一下)
这里我们通过计算目标指数的熵和特征值得熵的差,也就是熵的增益来确定哪些特征值对于目标指数的影响最大。
2.数据集
3.代码
(1)第一部分-计算熵
def calcShannonEnt(dataSet):
numEntries=len(dataSet) labelCounts={} for featVec in dataSet:
currentLabel=featVec[-1] if currentLabel not in labelCounts.keys():
labelCounts[currentLabel]=0
labelCounts[currentLabel]+=1
shannonEnt=0.0 for key in labelCounts: prob =float(labelCounts[key])/numEntries
shannonEnt-=prob*math.log(prob,2) return shannonEnt
(2)第二部分-切割数据
def splitDataSet(dataSet, axis, value):
retDataSet = []
for featVec in dataSet:
if featVec[axis] == value:
reducedFeatVec = featVec[:axis] #chop out axis used for splitting
reducedFeatVec.extend(featVec[axis+1:])
retDataSet.append(reducedFeatVec)
return retDataSet
(3)第三部分-找出信息熵增益最大的特征值
def chooseBestFeatureToSplit(dataSet):
numFeatures = len(dataSet[0]) - 1 #the last column is used for the labels
baseEntropy = calcShannonEnt(dataSet)
bestInfoGain = 0.0; bestFeature = -1
for i in range(numFeatures): #iterate over all the features
featList = [example[i] for example in dataSet]#create a list of all the examples of this feature uniqueVals = set(featList) #get a set of unique values newEntropy = 0.0
for value in uniqueVals:
subDataSet = splitDataSet(dataSet, i, value)
prob = len(subDataSet)/float(len(dataSet))
newEntropy += prob * calcShannonEnt(subDataSet)
infoGain = baseEntropy - newEntropy #calculate the info gain; ie reduction in entropy if (infoGain > bestInfoGain): #compare this to the best gain so far
bestInfoGain = infoGain #if better than current best, set to best
bestFeature = i
return bestFeature #returns an integer
4.代码下载
【机器学习算法-python实现】决策树-Decision tree(1) 信息熵划分数据集的更多相关文章
- 机器学习算法实践:决策树 (Decision Tree)(转载)
前言 最近打算系统学习下机器学习的基础算法,避免眼高手低,决定把常用的机器学习基础算法都实现一遍以便加深印象.本文为这系列博客的第一篇,关于决策树(Decision Tree)的算法实现,文中我将对决 ...
- 决策树Decision Tree 及实现
Decision Tree 及实现 标签: 决策树熵信息增益分类有监督 2014-03-17 12:12 15010人阅读 评论(41) 收藏 举报 分类: Data Mining(25) Pyt ...
- 数据挖掘 决策树 Decision tree
数据挖掘-决策树 Decision tree 目录 数据挖掘-决策树 Decision tree 1. 决策树概述 1.1 决策树介绍 1.1.1 决策树定义 1.1.2 本质 1.1.3 决策树的组 ...
- 【机器学习算法-python实现】决策树-Decision tree(2) 决策树的实现
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景 接着上一节说,没看到请先看一下上一节关于数据集的划分数据集划分.如今我们得到了每一个特征值得 ...
- 【机器学习算法-python实现】Adaboost的实现(1)-单层决策树(decision stump)
(转载请注明出处:http://blog.csdn.net/buptgshengod) 1.背景 上一节学习支持向量机,感觉公式都太难理解了,弄得我有点头大.只是这一章的Adaboost线比 ...
- (ZT)算法杂货铺——分类算法之决策树(Decision tree)
https://www.cnblogs.com/leoo2sk/archive/2010/09/19/decision-tree.html 3.1.摘要 在前面两篇文章中,分别介绍和讨论了朴素贝叶斯分 ...
- 机器学习-决策树 Decision Tree
咱们正式进入了机器学习的模型的部分,虽然现在最火的的机器学习方面的库是Tensorflow, 但是这里还是先简单介绍一下另一个数据处理方面很火的库叫做sklearn.其实咱们在前面已经介绍了一点点sk ...
- 决策树decision tree原理介绍_python sklearn建模_乳腺癌细胞分类器(推荐AAA)
sklearn实战-乳腺癌细胞数据挖掘(博主亲自录制视频) https://study.163.com/course/introduction.htm?courseId=1005269003& ...
- 用于分类的决策树(Decision Tree)-ID3 C4.5
决策树(Decision Tree)是一种基本的分类与回归方法(ID3.C4.5和基于 Gini 的 CART 可用于分类,CART还可用于回归).决策树在分类过程中,表示的是基于特征对实例进行划分, ...
随机推荐
- php动态生成一个xml文件供swf调用
<object classid="clsid:d27cdb6e-ae6d-11cf-96b8-444553540000" codebase="http://fpdo ...
- [转]Java Web乱码过滤器
本文转自http://blog.csdn.net/l271640625/article/details/6388690 大家都知道,在jsp里乱码是最让人讨厌的东西,有些乱码出来的莫名其妙,给开发带来 ...
- 高薪诚聘.NET MVC开发工程师
你想有大好的发展前途吗?你想拥有高的月薪吗? 赶快来吧! 1.企业网站.电子商务开发: 2.进行详细设计.代码开发,配合测试,高质量完成项目: 3.参与技术难题攻关.组织技术积累等工作. 任职资格: ...
- Linux下IP的配置
修改ip地址1.即时生效:# ifconfig eth0 192.168.1.102 netmask 255.255.255.02.启动生效:修改/etc/sysconfig/network-scri ...
- 【VC】VC工具栏图标合并工具(非tbcreator和visual toolbar)
VC开发难免会用到toolbar,在没有美工的时候,大部分时间我们只能自己上. 第一个方法:fireworks/photoshop平铺.现在的图片资源大多为背景透明的png图片,虽然fireworks ...
- 关于javascript里面仿python切片操作数组的使用方法
其实在使用了好一段时间的 python之后,我觉得最让我念念不忘的并不是python每次在写函数或者循环的时候可以少用{}括号这样的东西(ps:其实也是了..感觉很清爽,而且又开始写js的时候老是想用 ...
- iconfont阿里妈妈前端小图标使用方法详解
图标选购网址:http://www.iconfont.cn/ 1.从阿里妈妈网站选购好小图标,加入购物车,下载好文件: 2.把字体文件放入字体(font)文件夹(tff)(woff),(eot) 3. ...
- EntityFramwork6连接MySql错误
EntityFramwork6连接MySql错误 使用EF6连接MySql产生Exception: ProHub.ssdl(2,2) : 错误 0152: MySql.Data.MySqlClient ...
- HDU 5857 Median (推导)
Median 题目链接: http://acm.split.hdu.edu.cn/showproblem.php?pid=5857 Description There is a sorted sequ ...
- centos下安装mysql不能启动
初学者犯了个错误:yum安装mysql的命令是:yum -y install mysql-server,而不是yum -y install mysql ----------------------以下 ...