K - Ancient Messages

Time Limit:3000MS     Memory Limit:0KB     64bit IO Format:%lld & %llu

Appoint description:
 

Description

In order to understand early civilizations, archaeologists often study texts written in ancient languages. One such language, used in Egypt more than 3000 years ago, is based on characters called hieroglyphs. Figure C.1 shows six hieroglyphs and their names. In this problem, you will write a program to recognize these six characters.

Figure C.1: Six hieroglyphs

Input

The input consists of several test cases, each of which describes an image containing one or more hieroglyphs chosen from among those shown in Figure C.1. The image is given in the form of a series of horizontal scan lines consisting of black pixels (represented by 1) and white pixels (represented by 0). In the input data, each scan line is encoded in hexadecimal notation. For example, the sequence of eight pixels 10011100 (one black pixel, followed by two white pixels, and so on) would be represented in hexadecimal notation as 9c. Only digits and lowercase letters a through f are used in the hexadecimal encoding. The first line of each test case contains two integers, H and W. H(0 < H200) is the number of scan lines in the image. W(0 < W50) is the number of hexadecimal characters in each line. The next H lines contain the hexadecimal characters of the image, working from top to bottom. Input images conform to the following rules:

  • The image contains only hieroglyphs shown in Figure C.1.
  • Each image contains at least one valid hieroglyph.
  • Each black pixel in the image is part of a valid hieroglyph.
  • Each hieroglyph consists of a connected set of black pixels and each black pixel has at least one other black pixel on its top, bottom, left, or right side.
  • The hieroglyphs do not touch and no hieroglyph is inside another hieroglyph.
  • Two black pixels that touch diagonally will always have a common touching black pixel.
  • The hieroglyphs may be distorted but each has a shape that is topologically equivalent to one of the symbols in Figure C.1. (Two figures are topologically equivalent if each can be transformed into the other by stretching without tearing.)

The last test case is followed by a line containing two zeros.

Output

For each test case, display its case number followed by a string
containing one character for each hieroglyph recognized in the image,
using the following code:

Ankh: A
Wedjat: J
Djed: D
Scarab: S
Was: W
Akhet: K

In each output string, print the codes in alphabetic order. Follow the format of the sample output.

The sample input contains descriptions of test cases shown in Figures
C.2 and C.3. Due to space constraints not all of the sample input can be
shown on this page.

Sample Input

100 25
0000000000000000000000000
0000000000000000000000000
...(50 lines omitted)...
00001fe0000000000007c0000
00003fe0000000000007c0000
...(44 lines omitted)...
0000000000000000000000000
0000000000000000000000000
150 38
00000000000000000000000000000000000000
00000000000000000000000000000000000000
...(75 lines omitted)...
0000000003fffffffffffffffff00000000000
0000000003fffffffffffffffff00000000000
...(69 lines omitted)...
00000000000000000000000000000000000000
00000000000000000000000000000000000000
0 0

Sample Output

Case 1: AKW

Case 2: AAAAA

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <cmath>
#include <algorithm>
#include <string>
#include <vector>
#include <stack>
#include <queue>
#include <set>
#include <map>
#include <list>
#include <iomanip>
#include <cstdlib>
#include <sstream>
using namespace std;
const int INF=0x5fffffff;
const double EXP=1e-;
const int maxh=;
const int maxw=*+;
int H,W;
int pic[maxh][maxw],color[maxh][maxw];
int dir[][]={{,},{,},{,-},{-,}};
char bin[][];
char line[maxw];
const char* code = "WAKJSD"; void decode(int row,int col,char c)
{
for(int i=;i<;i++)
{
pic[row][col+i]=bin[(int)c][i]-'';
}
} void dfs(int row,int col,int c)
{
color[row][col]=c;
for(int i=;i<;i++)
{
int x=row+dir[i][];
int y=col+dir[i][];
if(x>=&&x<H&&y>=&&y<W&&pic[x][y]==pic[row][col]&&color[x][y]==)
dfs(x,y,c);
}
} vector<set<int> > neighbor; void check(int row,int col) //check white
{
for(int i=;i<;i++)
{
int x=row+dir[i][];
int y=col+dir[i][];
if(x>=&&x<H&&y>=&&y<W&&pic[x][y]==&&color[x][y]!=)
neighbor[color[row][col]].insert(color[x][y]);
}
} char recognize(int c)
{
int cnt=neighbor[c].size();
return code[cnt];
} int main()
{
strcpy(bin[''], "");
strcpy(bin[''], "");
strcpy(bin[''], "");
strcpy(bin[''], "");
strcpy(bin[''], "");
strcpy(bin[''], "");
strcpy(bin[''], "");
strcpy(bin[''], "");
strcpy(bin[''], "");
strcpy(bin[''], "");
strcpy(bin['a'], "");
strcpy(bin['b'], "");
strcpy(bin['c'], "");
strcpy(bin['d'], "");
strcpy(bin['e'], "");
strcpy(bin['f'], "");
int kase=;
while(scanf("%d%d",&H,&W)==&&(H+W))
{
memset(pic,,sizeof(pic));
memset(color,,sizeof(color));
for(int i=;i<H;i++)
{
scanf("%s",line);
for(int j=;j<W;j++)
decode(i+,j*+,line[j]); //注意起始位置
}
H+=;
W=W*+;
int cnt=;
vector<int > c;
for(int i=;i<H;i++)
for(int j=;j<W;j++)
{
if(color[i][j]==)
{
dfs(i,j,++cnt);
if(pic[i][j]==)
c.push_back(cnt);
}
}
neighbor.clear();
neighbor.resize(cnt+);
for(int i=;i<H;i++)
for(int j=;j<W;j++)
{
if(pic[i][j]==)
check(i,j);
}
vector<char> ans;
int t=c.size();
for(int i=;i<t;i++)
ans.push_back(recognize(c[i]));
sort(ans.begin(),ans.end());
printf("Case %d: ",kase++);
for(int i=;i<t;i++)
printf("%c",ans[i]);
printf("\n");
}
return ;
}

K - Ancient Messages(dfs求联通块)的更多相关文章

  1. 利用DFS求联通块个数

    /*572 - Oil Deposits ---DFS求联通块个数:从每个@出发遍历它周围的@.每次访问一个格子就给它一个联通编号,在访问之前,先检查他是否 ---已有编号,从而避免了一个格子重复访问 ...

  2. 【紫书】Oil Deposits UVA - 572 dfs求联通块

    题意:给你一个地图,求联通块的数量. 题解: for(所有还未标记的‘@’点) 边dfs边在vis数组标记id,直到不能继续dfs. 输出id及可: ac代码: #define _CRT_SECURE ...

  3. 用dfs求联通块(UVa572)

    一.题目 输入一个m行n列的字符矩阵,统计字符“@”组成多少个八连块.如果两个字符所在的格子相邻(横.竖.或者对角线方向),就说它们属于同一个八连块. 二.解题思路 和前面的二叉树遍历类似,图也有DF ...

  4. HDU - 1213 dfs求联通块or并查集

    思路:给定一个无向图,判断有几个联通块. AC代码 #include <cstdio> #include <cmath> #include <algorithm> ...

  5. 中矿新生赛 H 璐神看岛屿【BFS/DFS求联通块/连通块区域在边界则此连通块无效】

    时间限制:C/C++ 1秒,其他语言2秒空间限制:C/C++ 32768K,其他语言65536K64bit IO Format: %lld 题目描述 璐神现在有张n*m大小的地图,地图上标明了陆地(用 ...

  6. Educational Codeforces Round 1D 【DFS求联通块】

    http://blog.csdn.net/snowy_smile/article/details/49924965 D. Igor In the Museum time limit per test ...

  7. POJ 1562 Oil Deposits (并查集 OR DFS求联通块)

    Oil Deposits Time Limit: 1000MS   Memory Limit: 10000K Total Submissions: 14628   Accepted: 7972 Des ...

  8. HDU1241 Oil Deposits —— DFS求连通块

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1241 Oil Deposits Time Limit: 2000/1000 MS (Java/Othe ...

  9. C. Learning Languages 求联通块的个数

    C. Learning Languages 1 #include <iostream> 2 #include <cstdio> 3 #include <cstring&g ...

随机推荐

  1. 第三百三十四天 how can I 坚持

    I give up my dream that day,else,I coming on,the day my heart is die…… 那天,梦已碎,那天,心已死. 晚上看了个电影<奔爱& ...

  2. 邮件发送服务AWS SES,Mailgun以及SendCloud(转)

    原文:http://www.l4zy.com/posts/aws_ses-mailgun-sendcloud.html 电子邮件这一已经诞生很多年的互联网基础服务并没有随着时间的推移而慢慢消亡,实际上 ...

  3. Codeforces Round #367 (Div. 2) C. Hard problem(DP)

    Hard problem 题目链接: http://codeforces.com/contest/706/problem/C Description Vasiliy is fond of solvin ...

  4. invoking gdb

    [invoking gdb] The most usual way to start gdb is with one argument, specifying an executable progra ...

  5. [转]undefined reference问题总结

    转自http://ticktick.blog.51cto.com/823160/431329 最近在Linux下编程发现一个诡异的现象,就是在链接一个静态库的时候总是报错,类似下面这样的错误: (.t ...

  6. android AsyncHttpClient 开源框架的使用

    AsyncHttpClient 1.在很多时候android都需要进行网络的操作,而android自带的HttpClient可以实现,但要进行很多网络连接的时候(如:下载很多图片),就需要线程池来进行 ...

  7. Spring Bean生命周期

    1.Bean的建立:BeanFactory容器寻找Bean的定义信息,读取Bean定义文件,并将其实例化,生成各个Bean实例.2.属性注入:使用依赖注入,Spring按照Bean定义信息配置Bean ...

  8. openNebula Image上传

    Rack:ruby webserver框架 https://rack.github.io/ 文件上传使用基于tempfile 库 文件上传要经历两个过程: 1.上传文件传到opennebule sun ...

  9. Oracle用户、权限、角色管理

    Oracle 权限设置一.权限分类:系统权限:系统规定用户使用数据库的权限.(系统权限是对用户而言). 实体权限:某种权限用户对其它用户的表或视图的存取权限.(是针对表或视图而言的).   二.系统权 ...

  10. 从零开始学C++之虚函数与多态(一):虚函数表指针、虚析构函数、object slicing与虚函数

    一.多态 多态性是面向对象程序设计的重要特征之一. 多态性是指发出同样的消息被不同类型的对象接收时有可能导致完全不同的行为. 多态的实现: 函数重载 运算符重载 模板 虚函数 (1).静态绑定与动态绑 ...