POJ2527+多项式除法
模拟一遍即可。
注意一些特殊情况,见代码。
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
#include<algorithm>
#include<string.h>
using namespace std; const int maxn = ; struct Ploy{
int cnt;//项的数目
int coe[ maxn ];//各项系数
int exp[ maxn ];//各项指数
}a;
struct Ploy2{
int coe1,coe2;
int exp1,exp2;
}b;
struct Ploy3{
int coe,exp;
}tmp; bool Judge( int aim ){
//bool f = false;
for( int i=a.cnt-;i>=;i-- ){
if( a.coe[i]!=&&a.exp[i]>=aim ){
//f = true;
return true ;
}
}
return false;
} void solve( int n,int k ){
//ans.cnt = 0;
while( ){
//if( Judge(k)==false ) break;
int i;
for( i=a.cnt-;i>=;i-- ){
if( a.coe[i]!= ){
tmp.coe = a.coe[i];
tmp.exp = a.exp[i];
break;
}
}
if( tmp.exp<k ) break;
int delta_exp = tmp.exp-k;
int delta_coe = tmp.coe;//商
b.exp1 = tmp.exp,b.coe1 = tmp.coe;
b.exp2 = delta_exp,b.coe2 = delta_coe;
//bool f1 = false,f2 = false;
for( int i=;i<a.cnt;i++ ){
if( a.exp[i]==b.exp1 ){
a.coe[i] -= b.coe1;
//f1 = true;
}
if( a.exp[i]==b.exp2 ){
a.coe[i] -= b.coe2;
//f2 = true;
}
}
}
} int main(){
//freopen("in.txt","r",stdin);
//freopen("out.txt","w",stdout);
int n,k;
while( scanf("%d%d",&n,&k)== ){
if( n==k&&k==- ) break;
a.cnt = ;
for( int i=;i<=n;i++ ){
a.cnt ++;
scanf("%d",&a.coe[i]);
a.exp[i] = i;
}
if( k== ){
puts("");
continue;
}
//printf("input\n");
bool f = false;
for( int i=;i<a.cnt;i++ ){
if( a.coe[i]!= ){
f = true;
break;
}
}
if( f==false ) {
puts("");
continue;
}//多项式全为0
if( k>n ){
for( int i=;i<a.cnt;i++ ){
if( i== ) printf("%d",a.coe[i]);
else printf(" %d",a.coe[i]);
}
printf("\n");
continue;
}//商为0
//printf("solve\n");
solve( n,k );
f = false;
for( int i=;i<a.cnt;i++ ){
if( a.coe[i]!= ){
f = true;
break;
}
}
if( f==false ) {
puts("");
continue;
}//刚好整除
int pos = a.cnt-;
for( int i=a.cnt-;i>=;i-- ){
if( a.coe[i]!= ){
pos = i;
break;
}
}
for( int i=;i<=pos;i++ ){
if( i== ) printf("%d",a.coe[i]);
else {
printf(" %d",a.coe[i]);
}
}
printf("\n");
}
return ;
}
POJ2527+多项式除法的更多相关文章
- Re.多项式除法/取模
前言 emmm又是暂无 前置 多项式求逆 多项式除法/取模目的 还是跟之前一样顾名思义] 给定一个多项式F(x),请求出多项式Q(x)和R(x),满足F(x)=Q(x)∗G(x)+R(x),R项数小于 ...
- P4512 【模板】多项式除法
思路 多项式除法板子 多项式除法 给出\(A(x)\)和\(B(x)\),求一个\(n-m\)次的多项式\(D(x)\),一个\(m-1\)次多项式\(R(x)\),满足 \[ A(x)=B(x)D( ...
- xdoj-1211 (尧老师要教孩子解方程) :多项式除法
想法: 1 由于所有a[i] 是不为0的整数 所以解x是整数 2 其次解是an的约数 3 分解a[n] 用多项式除法判断约数是否为整式的解 #include<cstdio> #includ ...
- 【Codechef】Random Number Generator(多项式除法)
题解 前置技能 1.多项式求逆 求\(f(x)\*g(x) \equiv 1 \pmod {x^{t}}\) 我们在t == 1时,有\(f[0] = frac{1}{g[0]}\) 之后呢,我们倍增 ...
- 洛谷.4512.[模板]多项式除法(NTT)
题目链接 多项式除法 & 取模 很神奇,记录一下. 只是主要部分,更详细的和其它内容看这吧. 给定一个\(n\)次多项式\(A(x)\)和\(m\)次多项式\(D(x)\),求\(deg(Q) ...
- [洛谷P4512]【模板】多项式除法
题目大意:给定一个$n$次多项式$F(x)$和一个$m$次多项式$G(x)$,请求出多项式$Q(x),R(x)$,满足: 1. $Q(x)$次数为$n-m$,$R(x)$次数小于$m$2. $F(x) ...
- 【Luogu4512】多项式除法(FFT)
题面 洛谷 题解 模板题... 我直接蒯我写的东西... 这个除法是带余除法,所以并不能直接求逆解决. 要求的就是给定两个多项式\(A(x),B(x)\),其项数为\(n,m\) 求解一个\(n-m\ ...
- 题解 P4512 【【模板】多项式除法】
题目地址 前言 原理有大佬写了 所以蒟蒻只讲下本题的代码细节 我看懂的大佬博客:博客地址 因为可能知道了大致的步骤还有很多细的地方不理解导致写的时候要花很久并且看到大佬们好像都是用递归写的希望能有帮助 ...
- Luogu4512 【模板】多项式除法(多项式求逆+NTT)
http://blog.miskcoo.com/2015/05/polynomial-division 好神啊! 通过翻转多项式消除余数的影响,主要原理是商只与次数不小于m的项有关. #include ...
随机推荐
- 动态磁盘恢复为基本磁盘--DiskGenius
近日在老电脑中安装了Win8.1,想不到使用起来比Win7还流畅. 周末,手贱,由于C盘只有10GB,为主分区,D盘有40GB,为扩展分区,想要将C.D两个分区合二为一,在Win8.1的磁盘管理器中, ...
- php 中cookie和session的用法比较
1.cookie数据存放在客户的浏览器上,session数据放在服务器上. 2.cookie不是很安全,别人可以分析存放在本地的COOKIE并进行COOKIE欺骗,考虑到安全应当使用session. ...
- (转)卸载和安装LINUX上的JDK
卸载默认的: 用root用户登陆到系统,打开一个终端输入 # rpm -qa|grep gcj 显示内容其中包含下面两行信息 # java-1.4.2-gcj-compat-1.4.2.0-27jpp ...
- VC6配置OpenCV1.0
懒得写字,故扫描:
- [java学习笔记]java语言基础概述之函数的定义和使用&函数传值问题
1.函数 1.什么是函数? 定义在类中的具有特定功能的一段独立小程序. 函数也叫做方法 2.函数的格式 修饰符 返回值类型 函数名(参数类型 形式参数1, 参数类型 形式参数2-) { ...
- 《大话设计模式》学习笔记0:设计模式的原则 && UML类图
一.单一职责原则:就一个类而言,应该仅有一个引起它变化的原因. 如果一个类承担的职责过多,就等于把这些职责耦合在一起,一个职责的变化可能会削弱或者抑制这个类完成其他职责的能力.这种耦合会导致脆弱的设计 ...
- 【转】c#文件操作大全(二)
61.文件夹移动到整合操作 FolderDialog aa = new FolderDialog(); aa.DisplayDialog(); if (aa ...
- IOS苹果购买PHP服务器端验证(订阅购买和一次性购买通用)
// 正式环境验证地址 $ios_verify_url = 'https://buy.itunes.apple.com/verifyReceipt'; // 测试环境验证地址 $ios_sandbox ...
- shopnc 商城源码阅读笔记--开篇概述
关于shopnc 以下是摘抄自百度百科的关于shopnc的介绍: ShopNC商城系统,是天津市网城天创科技有限责任公司开发的一套多店模式的商城系统. 本系统具有商城系统非常完整和专业的功能与流程,系 ...
- 国产CPU研究单位及现状
1.国产CPU主要研制单位 (1)高性能通用CPU(“大CPU”,主要应用于高性能计算及服务器等) 主要研发单位:中国科学院计算所.北大众志.国防科技大学.上海高性能集成电路设计中心 (2)安全适用计 ...