dp,用dp[i][j],表示和为i的前j个维度的种类。其中arr[i],表示第i维的最大值。

则\begin{equation} dp[i][j] = \sum_{0 \leq k \leq \min(i,arr[i])} dp[i-k][j-1] \end{equation}

最后取和为sum/2的种类即可。原因可参照投n次投骰子,求骰子和的为多少时,概率最大。

代码如下:

 #define     MOD 1000000007
#define MAXN 2002
#include <cstdio>
#include <cstdlib>
#include <iostream>
#include <cstring>
using namespace std;
int N;
int arr[MAXN];
int dp[MAXN][MAXN];//[sum][dim]
int sum;
void solve()
{
memset(dp, , sizeof(dp));
//init
for( int i = ; i < MAXN ; i++ )
{
dp[][i] = ;
if( i <= arr[] )
{
dp[i][] = ;
}
}
for( int j = ; j < N ; j++ )
{
for( int i = ; i <= sum ; i++ )
{
int tmp = min(arr[j], i);
for( int k = ; k <= tmp; k++ )
{
dp[i][j] += dp[i-k][j-];
dp[i][j] %= MOD;
}
}
}
printf ( "%d\n", dp[sum/][N-] );
}
int main(int argc, char *argv[])
{
int T;
scanf ( "%d", &T );
while(T--)
{
sum = ;
scanf ( "%d", &N );
for( int i = ; i < N ; i++ )
{
scanf ( "%d", &arr[i] );
sum += arr[i];
}
solve();
}
}

hdu 5000 Clone的更多相关文章

  1. HDU 5000 Clone(离散数学+DP)(2014 ACM/ICPC Asia Regional Anshan Online)

    Problem Description After eating food from Chernobyl, DRD got a super power: he could clone himself ...

  2. HDU 5000

    http://acm.hdu.edu.cn/showproblem.php?pid=5000 题意:有n种属性,每种属性的数值可以是0-T[i],当一个人属性全部小于等于另一个人的属性时,小的那个人会 ...

  3. hdu 5000 共存问题->背包

    http://acm.hdu.edu.cn/showproblem.php?pid=5000 每只羊有n个属性 下面n个数字表示每个属性的值范围为[ 0, T[i] ] 对于羊圈里的a羊和b羊,若a羊 ...

  4. HDOJ 5000 Clone

    所有的属性,以满足一定的条件,是,财产和等于sum/2结果最大. Clone Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536 ...

  5. HDU 5000 2014 ACM/ICPC Asia Regional Anshan Online DP

    Clone Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 65536/65536K (Java/Other) Total Submiss ...

  6. hdu 5000 dp **

    题目中提到  It guarantees that the sum of T[i] in each test case is no more than 2000 and 1 <= T[i]. 加 ...

  7. HDU 2227 Find the nondecreasing subsequences (DP+树状数组+离散化)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2227 Find the nondecreasing subsequences             ...

  8. HDU 1394 Minimum Inversion Number ( 树状数组求逆序数 )

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1394 Minimum Inversion Number                         ...

  9. hdu 5071(2014鞍山现场赛B题,大模拟)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=5071 思路:模拟题,没啥可说的,移动的时候需要注意top的变化. #include <iostr ...

随机推荐

  1. Django中载入js和css文件

    Django中载入js和css文件 项目的文件夹结构例如以下: mysite |-mysite |-|-static |-|---js和css文件 |-|-|-init.py |-| |-models ...

  2. .TextOut文字保存为图片

    //Canvas.TextOut文字保存为图片 //Delphi开发案例精选,使用TextOut在画布上画图procedure TForm1.Button1Click(Sender: TObject) ...

  3. [Bootstrap] 1. container & container-fluid

    Container: 居中 <!DOCTYPE html> <html> <head> <title>Blasting Off With Bootstr ...

  4. Android ListView快速定位(四)

    方法四: 添加一个EditText,作为搜索框 + Filter 其实这个不算第四个方法,因为与第二个一样,主要是实现Filter. 但是对于EditText的监听,我以前也没有写过,所以也记录一下. ...

  5. Android高手进阶教程(七)之----Android 中Preferences的使用!

    http://blog.csdn.net/Android_Tutor/article/details/5531849 大家好,我们这一节讲的是Android Preferences 的学习,Prefe ...

  6. SQL Server 2014 AlwaysON

    . 环境准备 虚拟机:ssag-bj-ad-01, ssag-bj-fc-01, ssag-bj-sql-01, ssag-bj-sql-02, ssag-sh-ad-01, ssag-sh-fc-0 ...

  7. 一致性Hash算法及使用场景

    一.问题产生背景      在使用分布式对数据进行存储时,经常会碰到需要新增节点来满足业务快速增长的需求.然而在新增节点时,如果处理不善会导致所有的数据重新分片,这对于某些系统来说可能是灾难性的. 那 ...

  8. centos7支持ntfs

    简单搜索了一下,发现一个很好的安装步骤,简洁有效,已经试验. rpm -ivh http://pkgs.repoforge.org/rpmforge-release/rpmforge-release- ...

  9. FastStone Capture 注册码 序列号

    用户名:c1ikm 注册码:AXMQX-RMMMJ-DBHHF-WIHTV 或 AXOQS-RRMGS-ODAQO-APHUU

  10. jquery扩展 $.fn

    $.fn是指jquery的命名空间,加上fn上的方法及属性,会对jquery实例每一个有效. 如扩展$.fn.abc(),即$.fn.abc()是对jquery扩展了一个abc方法,那么后面你的每一个 ...