Linux高级字符设备驱动
转载:http://www.linuxidc.com/Linux/2012-05/60469p4.htm
1、什么是Poll方法,功能是什么?
2、Select系统调用(功能)
Select系统调用用于多路监控,当没有一个文件满足要求时,select将阻塞调用进程。
int select(int maxfd, fd_set *readfds, fd_set *writefds, fe_set *exceptfds, const struct timeval *timeout)
Select系统调用(参数)
1)Maxfd:
文件描述符的范围,比待检测的最大文件描述符大1
2)Readfds:
被读监控的文件描述符集
3)Writefds:
被写监控的文件描述符集
4)Exceptfds:
被异常监控的文件描述符集;
5)Timeout:
定时器,Timeout取不同的值,该调用有不同的表现:
1>Timeout值为0,不管是否有文件满足要求,都立刻返回,无文件满足要求返回0,有文件满足要求返回一个正值。
2>Timeout为NULL,select将阻塞进程,直到某个文件满足要求
3>Timeout 值 为 正 整 数 , 就 是 等 待 的 最 长 时 间 , 即select在timeout时间内阻塞进程。
3、Select系统调用(返回值)
Select调用返回时,返回值有如下情况:
1)正常情况下返回满足要求的文件描述符个数;
2)经过了timeout等待后仍无文件满足要求,返回值为0;
3)如果select被某个信号中断,它将返回-1并设置errno为EINTR。
4)如果出错,返回-1并设置相应的errno。
4、Select系统调用(使用方法)
1)将要监控的文件添加到文件描述符集
2)调用Select开始监控
3)判断文件是否发生变化
系统提供了4个宏对描述符集进行操作:
#include <sys/select.h>
void FD_SET(int fd, fd_set *fdset)
void FD_CLR(int fd, fd_set *fdset)
void FD_ZERO(fd_set *fdset)
void FD_ISSET(int fd, fd_set *fdset)
宏FD_SET将文件描述符fd添加到文件描述符集fdset中;
宏FD_CLR从文件描述符集fdset中清除文件描述符fd;
宏FD_ZERO清空文件描述符集fdset;
在调用select后使用FD_ISSET来检测文件描述符集fdset中的文件fd发生了变化。
FD_ZERO(&fds); //清空集合
FD_SET(fd1,&fds); //设置描述符
FD_SET(fd2,&fds); //设置描述符
maxfdp=fd1+1; //描述符最大值加1,假设fd1>fd2
switch(select(maxfdp,&fds,NULL,NULL,&timeout))
case -1: exit(-1);break; //select错误,退出程序
case 0:break;
default:
if(FD_ISSET(fd1,&fds)) //测试fd1是否可读
5、poll方法
应用程序常常使用select系统调用,它可能会阻塞进程。这个调用由驱动的 poll 方法实现,原型为:unsigned int (*poll)(struct file *filp,poll_table *wait)
Poll设备方法负责完成:
1)使用poll_wait将等待队列添加到poll_table中。
2)返回描述设备是否可读或可写的掩码。
位掩码
1>POLLIN 设备可读
2>POLLRDNORM数据可读
3>POLLOUT\设备可写
4>POLLWRNORM数据可写
设备可读通常返回(POLLIN|POLLRDNORM )
设备可写通常返回(POLLOUT|POLLWRNORM )
6、范例
static unsigned int mem_poll(struct file *filp,poll_table *wait)
{struct scull_pipe *dev =filp->private_data;
unsigned int mask =0;
/* 把等待队列添加到poll_table */
poll_wait(filp,&dev->inq,wait);
/*返回掩码*/
if (有数据可读)
mask = POLLIN |POLLRDNORM;/*设备可读*/
return mask;}
7、工作原理
Poll方法只是做一个登记,真正的阻塞发生在select.c 中的 do_select函数。
8、实例分析
1)poll型设备驱动memdev.h源码
#ifndef _MEMDEV_H_
#define _MEMDEV_H_ #ifndef MEMDEV_MAJOR
#define MEMDEV_MAJOR 0 /*预设的mem的主设备号*/
#endif #ifndef MEMDEV_NR_DEVS
#define MEMDEV_NR_DEVS 2 /*设备数*/
#endif #ifndef MEMDEV_SIZE
#define MEMDEV_SIZE 4096
#endif /*mem设备描述结构体*/
struct mem_dev
{
char *data;
unsigned long size; wait_queue_head_t inq; }; #endif /* _MEMDEV_H_ */
2)Poll型设备驱动memdev.c源码
#include <linux/module.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/cdev.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/uaccess.h> #include <linux/poll.h>
#include "memdev.h" static mem_major = MEMDEV_MAJOR;
bool have_data = false; /*表明设备有足够数据可供读*/ module_param(mem_major, int, S_IRUGO); struct mem_dev *mem_devp; /*设备结构体指针*/ struct cdev cdev; /*文件打开函数*/
int mem_open(struct inode *inode, struct file *filp)
{
struct mem_dev *dev; /*获取次设备号*/
int num = MINOR(inode->i_rdev); if (num >= MEMDEV_NR_DEVS)
return -ENODEV;
dev = &mem_devp[num]; /*将设备描述结构指针赋值给文件私有数据指针*/
filp->private_data = dev; return ;
} /*文件释放函数*/
int mem_release(struct inode *inode, struct file *filp)
{
return ;
} /*读函数*/
static ssize_t mem_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = ;
struct mem_dev *dev = filp->private_data; /*获得设备结构体指针*/ /*判断读位置是否有效*/
if (p >= MEMDEV_SIZE)
return ;
if (count > MEMDEV_SIZE - p)
count = MEMDEV_SIZE - p; while (!have_data) /* 没有数据可读,考虑为什么不用if,而用while */
{
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN; wait_event_interruptible(dev->inq,have_data);
} /*读数据到用户空间*/
if (copy_to_user(buf, (void*)(dev->data + p), count))
{
ret = - EFAULT;
}
else
{
*ppos += count;
ret = count; printk(KERN_INFO "read %d bytes(s) from %d\n", count, p);
} have_data = false; /* 表明不再有数据可读 */
/* 唤醒写进程 */
return ret;
} /*写函数*/
static ssize_t mem_write(struct file *filp, const char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = ;
struct mem_dev *dev = filp->private_data; /*获得设备结构体指针*/ /*分析和获取有效的写长度*/
if (p >= MEMDEV_SIZE)
return ;
if (count > MEMDEV_SIZE - p)
count = MEMDEV_SIZE - p; /*从用户空间写入数据*/
if (copy_from_user(dev->data + p, buf, count))
ret = - EFAULT;
else
{
*ppos += count;
ret = count; printk(KERN_INFO "written %d bytes(s) from %d\n", count, p);
} have_data = true; /* 有新的数据可读 */ /* 唤醒读进程 */
wake_up(&(dev->inq)); return ret;
} /* seek文件定位函数 */
static loff_t mem_llseek(struct file *filp, loff_t offset, int whence)
{
loff_t newpos; switch(whence) {
case : /* SEEK_SET */
newpos = offset;
break; case : /* SEEK_CUR */
newpos = filp->f_pos + offset;
break; case : /* SEEK_END */
newpos = MEMDEV_SIZE - + offset;
break; default: /* can't happen */
return -EINVAL;
}
if ((newpos<) || (newpos>MEMDEV_SIZE))
return -EINVAL; filp->f_pos = newpos;
return newpos; }
unsigned int mem_poll(struct file *filp, poll_table *wait)
{
struct mem_dev *dev = filp->private_data;
unsigned int mask = ; /*将等待队列添加到poll_table表中 */
poll_wait(filp, &dev->inq, wait); if (have_data) mask |= POLLIN | POLLRDNORM; /* readable */ return mask;
} /*文件操作结构体*/
static const struct file_operations mem_fops =
{
.owner = THIS_MODULE,
.llseek = mem_llseek,
.read = mem_read,
.write = mem_write,
.open = mem_open,
.release = mem_release,
.poll = mem_poll,
}; /*设备驱动模块加载函数*/
static int memdev_init(void)
{
int result;
int i; dev_t devno = MKDEV(mem_major, ); /* 静态申请设备号*/
if (mem_major)
result = register_chrdev_region(devno, , "memdev");
else /* 动态分配设备号 */
{
result = alloc_chrdev_region(&devno, , , "memdev");
mem_major = MAJOR(devno);
} if (result < )
return result; /*初始化cdev结构*/
cdev_init(&cdev, &mem_fops);
cdev.owner = THIS_MODULE;
cdev.ops = &mem_fops; /* 注册字符设备 */
cdev_add(&cdev, MKDEV(mem_major, ), MEMDEV_NR_DEVS); /* 为设备描述结构分配内存*/
mem_devp = kmalloc(MEMDEV_NR_DEVS * sizeof(struct mem_dev), GFP_KERNEL);
if (!mem_devp) /*申请失败*/
{
result = - ENOMEM;
goto fail_malloc;
}
memset(mem_devp, , sizeof(struct mem_dev)); /*为设备分配内存*/
for (i=; i < MEMDEV_NR_DEVS; i++)
{
mem_devp[i].size = MEMDEV_SIZE;
mem_devp[i].data = kmalloc(MEMDEV_SIZE, GFP_KERNEL);
memset(mem_devp[i].data, , MEMDEV_SIZE); /*初始化等待队列*/
init_waitqueue_head(&(mem_devp[i].inq));
//init_waitqueue_head(&(mem_devp[i].outq));
} return ; fail_malloc:
unregister_chrdev_region(devno, ); return result;
} /*模块卸载函数*/
static void memdev_exit(void)
{
cdev_del(&cdev); /*注销设备*/
kfree(mem_devp); /*释放设备结构体内存*/
unregister_chrdev_region(MKDEV(mem_major, ), ); /*释放设备号*/
} MODULE_AUTHOR("David Xie");
MODULE_LICENSE("GPL"); module_init(memdev_init); module_exit(memdev_exit); )测试程序app-read.c源码 #include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/select.h>
#include <sys/time.h>
#include <errno.h> int main()
{
int fd;
fd_set rds; //声明描述符集合
int ret;
char Buf[]; /*初始化Buf*/
strcpy(Buf,"memdev is char dev!");
printf("BUF: %s\n",Buf); /*打开设备文件*/
fd = open("/dev/memdev0",O_RDWR); FD_ZERO(&rds); //清空描述符集合
FD_SET(fd, &rds); //设置描述符集合 /*清除Buf*/
strcpy(Buf,"Buf is NULL!");
printf("Read BUF1: %s\n",Buf); ret = select(fd + , &rds, NULL, NULL, NULL);//调用select()监控函数
if (ret < )
{
printf("select error!\n");
exit();
}
if (FD_ISSET(fd, &rds)) //测试fd1是否可读
read(fd, Buf, sizeof(Buf)); /*检测结果*/
printf("Read BUF2: %s\n",Buf); close(fd); return ;
}
Linux高级字符设备驱动的更多相关文章
- linux 高级字符设备驱动 ioctl操作介绍 例程分析实现【转】
转自:http://my.oschina.net/u/274829/blog/285014 1,ioctl介绍 ioctl控制设备读写数据以及关闭等. 用户空间函数原型:int ioctl(int f ...
- Linux高级字符设备驱动 poll方法(select多路监控原理与实现)
1.什么是Poll方法,功能是什么? 2.Select系统调用(功能) Select系统调用用于多路监控,当没有一个文件满足要求时,select将阻塞调用进程. int selec ...
- Linux实现字符设备驱动的基础步骤
Linux应用层想要操作kernel层的API,比方想操作相关GPIO或寄存器,能够通过写一个字符设备驱动来实现. 1.先在rootfs中的 /dev/ 下生成一个字符设备.注意主设备号 和 从设备号 ...
- linux学习--字符设备驱动
目录 1.字符设备驱动抽象结构 2.设备号及设备节点 2.1 设备号分配与管理 2.2 设备节点的生成 3.打开设备文件 linux驱动有基本的接口进行注册和卸载,这里不再做详细说明,本文主要关注li ...
- linux driver ------ 字符设备驱动 之 “ 创建设备节点流程 ”
在字符设备驱动开发的入门教程中,最常见的就是用device_create()函数来创建设备节点了,但是在之后阅读内核源码的过程中却很少见device_create()的踪影了,取而代之的是device ...
- 【转】Linux高级字符设备之Poll操作
原文网址:http://www.cnblogs.com/geneil/archive/2011/12/04/2275559.html 在用户程序中,select()和poll()也是与设备阻塞与非阻塞 ...
- Linux LED字符设备驱动
// 申请IO资源 int gpio_request(unsigned gpio, const char *label); // 释放IO资源 void gpio_free(unsigned gpio ...
- Linux 简单字符设备驱动
1.hello_drv.c (1) 初始化和卸载函数的格式是固定的,函数名自定义 (2) printk是内核的打印函数,用法与printf一致 (3) MODULE_LICENSE:模块代码支持开源协 ...
- Linux驱动设计——字符设备驱动(一)
Linux字符设别驱动结构 cdev结构体 struct cdev { struct kobject kobj; struct module *owner; const struct file_ope ...
随机推荐
- 《学习OpenCV》练习题第四章第一题a
#include <highgui.h> #include <cv.h> #pragma comment (lib,"opencv_calib3d231d.lib&q ...
- air for ios
在 Adobe AIR 中为不同屏幕尺寸的多种设备提供支持 使用Flash Builder 4.5进行多平台游戏开发 手机屏幕触控技术与提升AIR在Android上的触控体验 AIR Native E ...
- 第三百五十九天 how can I 坚持
在家待了一天,鼓捣了下linux,总算能连上网了,懂得还是少啊. 晚上去华北电力大学跑了会步,十圈,还挺有成就感呢,就是没带手环,哎. 以后学习一定要记笔记,上了这么多年学,都 没学会怎么记笔记,也是 ...
- Python 代码性能优化技巧(转)
原文:Python 代码性能优化技巧 Python 代码优化常见技巧 代码优化能够让程序运行更快,它是在不改变程序运行结果的情况下使得程序的运行效率更高,根据 80/20 原则,实现程序的重构.优化. ...
- 导出Excel Gridview
/// <summary> /// 定义导出Excel的函数 /// </summary> /// <param name="FileType ...
- HDU2033 人见人爱A+B 分类: ACM 2015-06-21 23:05 13人阅读 评论(0) 收藏
人见人爱A+B Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others) Total Su ...
- Labview中的属性节点
获取(读取)和/或设置(写入)引用的属性.通过属性节点对本地或远程应用程序实例.VI或对象获取或设置属性和方法也可通过属性节点访问LabVIEW类的私有数据. 属性节点可自动调整为用户所引用的对象的类 ...
- java反射工具类
package com.yingchao.kgou.core; import java.lang.reflect.Field; import java.lang.reflect.InvocationT ...
- 巧解Tomcat中JVM内存溢出问题
你对Tomcat 的JVM内存溢出问题的解决方法是否了解,这里和大家分享一下,相信本文介绍一定会让你有所收获. tomcat 的JVM内存溢出问题的解决 最近在熟悉一个开发了有几年的项目,需要把数据库 ...
- js 设置回车事件
document.onkeydown=function(event){ var e = event || window.event || arguments.callee.caller.argumen ...