转载:http://www.linuxidc.com/Linux/2012-05/60469p4.htm

1、什么是Poll方法,功能是什么?

2、Select系统调用(功能)
      Select系统调用用于多路监控,当没有一个文件满足要求时,select将阻塞调用进程。
      int select(int maxfd, fd_set *readfds, fd_set *writefds, fe_set *exceptfds, const struct timeval *timeout)
     Select系统调用(参数)
     1)Maxfd:
           文件描述符的范围,比待检测的最大文件描述符大1
     2)Readfds:
           被读监控的文件描述符集
     3)Writefds:
           被写监控的文件描述符集
     4)Exceptfds:
           被异常监控的文件描述符集;
     5)Timeout:

定时器,Timeout取不同的值,该调用有不同的表现:

1>Timeout值为0,不管是否有文件满足要求,都立刻返回,无文件满足要求返回0,有文件满足要求返回一个正值。
          2>Timeout为NULL,select将阻塞进程,直到某个文件满足要求
          3>Timeout 值 为 正 整 数 , 就 是 等 待 的 最 长 时 间 , 即select在timeout时间内阻塞进程。
3、Select系统调用(返回值)
      Select调用返回时,返回值有如下情况:
      1)正常情况下返回满足要求的文件描述符个数;
      2)经过了timeout等待后仍无文件满足要求,返回值为0;
      3)如果select被某个信号中断,它将返回-1并设置errno为EINTR。
      4)如果出错,返回-1并设置相应的errno。
4、Select系统调用(使用方法)
      1)将要监控的文件添加到文件描述符集
      2)调用Select开始监控
      3)判断文件是否发生变化
        系统提供了4个宏对描述符集进行操作:
        #include <sys/select.h>
        void FD_SET(int fd, fd_set *fdset)
        void FD_CLR(int fd, fd_set *fdset)
        void FD_ZERO(fd_set *fdset)
        void FD_ISSET(int fd, fd_set *fdset)
        宏FD_SET将文件描述符fd添加到文件描述符集fdset中;
        宏FD_CLR从文件描述符集fdset中清除文件描述符fd;
        宏FD_ZERO清空文件描述符集fdset;
        在调用select后使用FD_ISSET来检测文件描述符集fdset中的文件fd发生了变化。
        FD_ZERO(&fds); //清空集合
        FD_SET(fd1,&fds); //设置描述符
        FD_SET(fd2,&fds); //设置描述符
        maxfdp=fd1+1; //描述符最大值加1,假设fd1>fd2
        switch(select(maxfdp,&fds,NULL,NULL,&timeout))
                 case -1: exit(-1);break; //select错误,退出程序
                 case 0:break;
                default:
        if(FD_ISSET(fd1,&fds)) //测试fd1是否可读

5、poll方法

应用程序常常使用select系统调用,它可能会阻塞进程。这个调用由驱动的 poll 方法实现,原型为:unsigned int (*poll)(struct file *filp,poll_table *wait)

Poll设备方法负责完成:
      1)使用poll_wait将等待队列添加到poll_table中。
      2)返回描述设备是否可读或可写的掩码。
      位掩码
      1>POLLIN 设备可读
      2>POLLRDNORM数据可读
      3>POLLOUT\设备可写
      4>POLLWRNORM数据可写
      设备可读通常返回(POLLIN|POLLRDNORM )
      设备可写通常返回(POLLOUT|POLLWRNORM )
6、范例

static unsigned int mem_poll(struct file *filp,poll_table *wait)
{

struct scull_pipe *dev =filp->private_data;
unsigned int mask =0;
/* 把等待队列添加到poll_table */
poll_wait(filp,&dev->inq,wait);
/*返回掩码*/
if (有数据可读)
mask = POLLIN |POLLRDNORM;/*设备可读*/
return mask;

}

7、工作原理
      Poll方法只是做一个登记,真正的阻塞发生在select.c 中的 do_select函数。

8、实例分析

1)poll型设备驱动memdev.h源码

#ifndef _MEMDEV_H_
#define _MEMDEV_H_ #ifndef MEMDEV_MAJOR
#define MEMDEV_MAJOR 0 /*预设的mem的主设备号*/
#endif #ifndef MEMDEV_NR_DEVS
#define MEMDEV_NR_DEVS 2 /*设备数*/
#endif #ifndef MEMDEV_SIZE
#define MEMDEV_SIZE 4096
#endif /*mem设备描述结构体*/
struct mem_dev
{
char *data;
unsigned long size; wait_queue_head_t inq; }; #endif /* _MEMDEV_H_ */

2)Poll型设备驱动memdev.c源码

    #include <linux/module.h>
#include <linux/types.h>
#include <linux/fs.h>
#include <linux/errno.h>
#include <linux/mm.h>
#include <linux/sched.h>
#include <linux/init.h>
#include <linux/cdev.h>
#include <asm/io.h>
#include <asm/system.h>
#include <asm/uaccess.h> #include <linux/poll.h>
#include "memdev.h" static mem_major = MEMDEV_MAJOR;
bool have_data = false; /*表明设备有足够数据可供读*/ module_param(mem_major, int, S_IRUGO); struct mem_dev *mem_devp; /*设备结构体指针*/ struct cdev cdev; /*文件打开函数*/
int mem_open(struct inode *inode, struct file *filp)
{
struct mem_dev *dev; /*获取次设备号*/
int num = MINOR(inode->i_rdev); if (num >= MEMDEV_NR_DEVS)
return -ENODEV;
dev = &mem_devp[num]; /*将设备描述结构指针赋值给文件私有数据指针*/
filp->private_data = dev; return ;
} /*文件释放函数*/
int mem_release(struct inode *inode, struct file *filp)
{
return ;
} /*读函数*/
static ssize_t mem_read(struct file *filp, char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = ;
struct mem_dev *dev = filp->private_data; /*获得设备结构体指针*/ /*判断读位置是否有效*/
if (p >= MEMDEV_SIZE)
return ;
if (count > MEMDEV_SIZE - p)
count = MEMDEV_SIZE - p; while (!have_data) /* 没有数据可读,考虑为什么不用if,而用while */
{
if (filp->f_flags & O_NONBLOCK)
return -EAGAIN; wait_event_interruptible(dev->inq,have_data);
} /*读数据到用户空间*/
if (copy_to_user(buf, (void*)(dev->data + p), count))
{
ret = - EFAULT;
}
else
{
*ppos += count;
ret = count; printk(KERN_INFO "read %d bytes(s) from %d\n", count, p);
} have_data = false; /* 表明不再有数据可读 */
/* 唤醒写进程 */
return ret;
} /*写函数*/
static ssize_t mem_write(struct file *filp, const char __user *buf, size_t size, loff_t *ppos)
{
unsigned long p = *ppos;
unsigned int count = size;
int ret = ;
struct mem_dev *dev = filp->private_data; /*获得设备结构体指针*/ /*分析和获取有效的写长度*/
if (p >= MEMDEV_SIZE)
return ;
if (count > MEMDEV_SIZE - p)
count = MEMDEV_SIZE - p; /*从用户空间写入数据*/
if (copy_from_user(dev->data + p, buf, count))
ret = - EFAULT;
else
{
*ppos += count;
ret = count; printk(KERN_INFO "written %d bytes(s) from %d\n", count, p);
} have_data = true; /* 有新的数据可读 */ /* 唤醒读进程 */
wake_up(&(dev->inq)); return ret;
} /* seek文件定位函数 */
static loff_t mem_llseek(struct file *filp, loff_t offset, int whence)
{
loff_t newpos; switch(whence) {
case : /* SEEK_SET */
newpos = offset;
break; case : /* SEEK_CUR */
newpos = filp->f_pos + offset;
break; case : /* SEEK_END */
newpos = MEMDEV_SIZE - + offset;
break; default: /* can't happen */
return -EINVAL;
}
if ((newpos<) || (newpos>MEMDEV_SIZE))
return -EINVAL; filp->f_pos = newpos;
return newpos; }
unsigned int mem_poll(struct file *filp, poll_table *wait)
{
struct mem_dev *dev = filp->private_data;
unsigned int mask = ; /*将等待队列添加到poll_table表中 */
poll_wait(filp, &dev->inq, wait); if (have_data) mask |= POLLIN | POLLRDNORM; /* readable */ return mask;
} /*文件操作结构体*/
static const struct file_operations mem_fops =
{
.owner = THIS_MODULE,
.llseek = mem_llseek,
.read = mem_read,
.write = mem_write,
.open = mem_open,
.release = mem_release,
.poll = mem_poll,
}; /*设备驱动模块加载函数*/
static int memdev_init(void)
{
int result;
int i; dev_t devno = MKDEV(mem_major, ); /* 静态申请设备号*/
if (mem_major)
result = register_chrdev_region(devno, , "memdev");
else /* 动态分配设备号 */
{
result = alloc_chrdev_region(&devno, , , "memdev");
mem_major = MAJOR(devno);
} if (result < )
return result; /*初始化cdev结构*/
cdev_init(&cdev, &mem_fops);
cdev.owner = THIS_MODULE;
cdev.ops = &mem_fops; /* 注册字符设备 */
cdev_add(&cdev, MKDEV(mem_major, ), MEMDEV_NR_DEVS); /* 为设备描述结构分配内存*/
mem_devp = kmalloc(MEMDEV_NR_DEVS * sizeof(struct mem_dev), GFP_KERNEL);
if (!mem_devp) /*申请失败*/
{
result = - ENOMEM;
goto fail_malloc;
}
memset(mem_devp, , sizeof(struct mem_dev)); /*为设备分配内存*/
for (i=; i < MEMDEV_NR_DEVS; i++)
{
mem_devp[i].size = MEMDEV_SIZE;
mem_devp[i].data = kmalloc(MEMDEV_SIZE, GFP_KERNEL);
memset(mem_devp[i].data, , MEMDEV_SIZE); /*初始化等待队列*/
init_waitqueue_head(&(mem_devp[i].inq));
//init_waitqueue_head(&(mem_devp[i].outq));
} return ; fail_malloc:
unregister_chrdev_region(devno, ); return result;
} /*模块卸载函数*/
static void memdev_exit(void)
{
cdev_del(&cdev); /*注销设备*/
kfree(mem_devp); /*释放设备结构体内存*/
unregister_chrdev_region(MKDEV(mem_major, ), ); /*释放设备号*/
} MODULE_AUTHOR("David Xie");
MODULE_LICENSE("GPL"); module_init(memdev_init); module_exit(memdev_exit); )测试程序app-read.c源码 #include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/ioctl.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/select.h>
#include <sys/time.h>
#include <errno.h> int main()
{
int fd;
fd_set rds; //声明描述符集合
int ret;
char Buf[]; /*初始化Buf*/
strcpy(Buf,"memdev is char dev!");
printf("BUF: %s\n",Buf); /*打开设备文件*/
fd = open("/dev/memdev0",O_RDWR); FD_ZERO(&rds); //清空描述符集合
FD_SET(fd, &rds); //设置描述符集合 /*清除Buf*/
strcpy(Buf,"Buf is NULL!");
printf("Read BUF1: %s\n",Buf); ret = select(fd + , &rds, NULL, NULL, NULL);//调用select()监控函数
if (ret < )
{
printf("select error!\n");
exit();
}
if (FD_ISSET(fd, &rds)) //测试fd1是否可读
read(fd, Buf, sizeof(Buf)); /*检测结果*/
printf("Read BUF2: %s\n",Buf); close(fd); return ;
}

Linux高级字符设备驱动的更多相关文章

  1. linux 高级字符设备驱动 ioctl操作介绍 例程分析实现【转】

    转自:http://my.oschina.net/u/274829/blog/285014 1,ioctl介绍 ioctl控制设备读写数据以及关闭等. 用户空间函数原型:int ioctl(int f ...

  2. Linux高级字符设备驱动 poll方法(select多路监控原理与实现)

    1.什么是Poll方法,功能是什么? 2.Select系统调用(功能)      Select系统调用用于多路监控,当没有一个文件满足要求时,select将阻塞调用进程.      int selec ...

  3. Linux实现字符设备驱动的基础步骤

    Linux应用层想要操作kernel层的API,比方想操作相关GPIO或寄存器,能够通过写一个字符设备驱动来实现. 1.先在rootfs中的 /dev/ 下生成一个字符设备.注意主设备号 和 从设备号 ...

  4. linux学习--字符设备驱动

    目录 1.字符设备驱动抽象结构 2.设备号及设备节点 2.1 设备号分配与管理 2.2 设备节点的生成 3.打开设备文件 linux驱动有基本的接口进行注册和卸载,这里不再做详细说明,本文主要关注li ...

  5. linux driver ------ 字符设备驱动 之 “ 创建设备节点流程 ”

    在字符设备驱动开发的入门教程中,最常见的就是用device_create()函数来创建设备节点了,但是在之后阅读内核源码的过程中却很少见device_create()的踪影了,取而代之的是device ...

  6. 【转】Linux高级字符设备之Poll操作

    原文网址:http://www.cnblogs.com/geneil/archive/2011/12/04/2275559.html 在用户程序中,select()和poll()也是与设备阻塞与非阻塞 ...

  7. Linux LED字符设备驱动

    // 申请IO资源 int gpio_request(unsigned gpio, const char *label); // 释放IO资源 void gpio_free(unsigned gpio ...

  8. Linux 简单字符设备驱动

    1.hello_drv.c (1) 初始化和卸载函数的格式是固定的,函数名自定义 (2) printk是内核的打印函数,用法与printf一致 (3) MODULE_LICENSE:模块代码支持开源协 ...

  9. Linux驱动设计——字符设备驱动(一)

    Linux字符设别驱动结构 cdev结构体 struct cdev { struct kobject kobj; struct module *owner; const struct file_ope ...

随机推荐

  1. 新工程软连接到原来的工程的out目录后,可以直接编译模块

    P508B_App_old_developer/alps$ ln -s  ../../P508B_App/alps/out 连接后,第一次编译后要加分支 ./mk hedy89_we_jb2 mm p ...

  2. Spark shell的原理

    Spark shell是一个特别适合快速开发Spark原型程序的工具,可以帮助我们熟悉Scala语言.即使你对Scala不熟悉,仍然可以使用这个工具.Spark shell使得用户可以和Spark集群 ...

  3. 树上的DP

    CF#196B http://codeforces.com/contest/338/problem/B 题意:在一颗树上,给m个点,求到所有m个点距离不超过d的点的个数,所有路径长度为1. 分析:问题 ...

  4. hdu 1576 A/B (扩展欧几里德简单运用)

    http://acm.hdu.edu.cn/showproblem.php?pid=1576 A/B Time Limit: 1000/1000 MS (Java/Others) Memory Lim ...

  5. socket 连接,使得地址马上可以重用

    /* 使地址马上可以重用 */                                                                                     ...

  6. Java垃圾回收器

    一.Java垃圾回收器要负责完成以下3个任务: 1.分配内存 2.确保被引用对象的内存不被错误回收 3.回收不再被引用的对象的内存空间 二.垃圾回收是一个复杂而又耗时的操作.如果JVM花费过多的时间在 ...

  7. Linux内核完全注释之编程语言和环境(一)

    as86汇编器 1.来源与对于linux的用途 as86来源minix-386开发的intel 8086.80386汇编编译程序和链接程序,他主要为linux创建16位的启动引导扇区程序boot/bo ...

  8. 如何在协作开发安卓项目中打jar包给合作人

    一般情况下,id都是安卓自动生成的.使用时只要用R.id.xx就可以了.但是,在合作开发安卓时,需要将自己开发的代码部分打成jar包,甚至做混淆. 这就需要使用java的反射机制.在取id时使用如下类 ...

  9. [转]Android事件分发机制完全解析,带你从源码的角度彻底理解(上)

    Android事件分发机制 该篇文章出处:http://blog.csdn.net/guolin_blog/article/details/9097463 其实我一直准备写一篇关于Android事件分 ...

  10. Oracle中的NVL,NVL2,NULLIF以及COALESCE函数使用

    首先注意空(null)值,空值加任何值都是空值,空值乘任何值也都是空值,依此类推. 1.NVL函数 NVL函数的格式如下:NVL(expr1,expr2) 含义是:如果oracle第一个参数为空那么显 ...