For any matrix $A$ the series $$\bex \exp A=I+A+\frac{A^2}{2!}+\cdots+\frac{A^n}{n!}+\cdots \eex$$ converges. This is called the exponential of $A$. The matrix $A$ is always invertible and $$\bex (\exp A)^{-1}=\exp(-A). \eex$$ Conversely, every invertible matrix can be expressed as the exponential of some matrix. Every unitary matrix can be expressed as the exponential of a skew-Hermitian matrix.

Solution.

(1). $$\bex \exp A=\sum_{n=0}^\infty \frac{A^n}{n!} \eex$$ follows from the fact that $$\bex \sum_{n=0}^\infty \frac{\sen{A}^2}{n!}=\exp \sen{A}<\infty \eex$$ and the completeness of $\M(n)$.

(2). By taking limits in $$\beex \bea &\quad\sex{\sum_{k=0}^n\frac{A^k}{k!}} \cdot \sex{\sum_{l=0}^n \frac{B^l}{l!}}\quad\sex{AB=BA}\\ &=\sum_{k,l=0}^n \frac{A^kB^l}{k!l!}\\ &=\sum_{s=0}^{2n} \frac{1}{s!}\sum_{k+l=s}\frac{s!}{k!(s-k)!}A^kB^{s-k}\\ &=\sum_{s=0}^{2n}\frac{1}{s!}(A+B)^s, \eea \eeex$$ we have $$\bex \exp(A)\cdot \exp (B)=\exp(A+B). \eex$$ Taking $B=-A$, we see readily that $$\bex \exp(A)\cdot \exp(-A)=I. \eex$$

(3). For invertible matrix $A$, by theJordan canonical decomposition, there exists an unitary $U$ such that $$\bex A=U\diag(J_1,\cdots,J_s)U^*, \eex$$ with the diagonals $\lm_i$ of $J_i$ is not equal to zero. We only need to show that $J_i$ is the exponential of some matrix. In fact, set $\mu_i\in\bbC$ satisfy $e^{\mu_i}=\lm_i$ and $$\bex \vLm_i=\diag(\mu_i,\cdots,\mu_i), \eex$$ then its exponential $$\bex \exp \vLm_i=\diag(\lm_i,\cdots,\lm_i) \eex$$ has the same eigenvalues of $J_i$. Hence, they are similar, and there exists some invertible matrix $P_i$ such that $$\bex J_i=P_i^{-1}\exp \vLm_i P_i=\exp [P_i^{-1}\vLm_iP_i]. \eex$$

(4). For $U\in \U(n)$, $$\bex U=\exp B\ra I=U^*U=\exp (B^*)\cdot \exp (B)=\exp(B^*+B)\ra B^*=-B. \eex$$

[Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.8的更多相关文章

  1. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.1

    Let $x,y,z$ be linearly independent vectors in $\scrH$. Find a necessary and sufficient condition th ...

  2. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.3.7

    For every matrix $A$, the matrix $$\bex \sex{\ba{cc} I&A\\ 0&I \ea} \eex$$ is invertible and ...

  3. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.10

    Every $k\times k$ positive matrix $A=(a_{ij})$ can be realised as a Gram matrix, i.e., vectors $x_j$ ...

  4. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.5

    Show that the inner product $$\bex \sef{x_1\vee \cdots \vee x_k,y_1\vee \cdots\vee y_k} \eex$$ is eq ...

  5. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.5.1

    Show that the inner product $$\bex \sef{x_1\wedge \cdots \wedge x_k,y_1\wedge \cdots\wedge y_k} \eex ...

  6. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.6

    Let $A$ and $B$ be two matrices (not necessarily of the same size). Relative to the lexicographicall ...

  7. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.4.4

    (1). There is a natural isomorphism between the spaces $\scrH\otimes \scrH^*$ and $\scrL(\scrH,\scrK ...

  8. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.7

    The set of all invertible matrices is a dense open subset of the set of all $n\times n$ matrices. Th ...

  9. [Bhatia.Matrix Analysis.Solutions to Exercises and Problems]ExI.2.6

    If $\sen{A}<1$, then $I-A$ is invertible, and $$\bex (I-A)^{-1}=I+A+A^2+\cdots, \eex$$ aa converg ...

随机推荐

  1. 安装Nuget上常用的包的命令

    起因: Nuget图形化操作界面各种卡顿,或者有时干脆就连不上了.所以用命令还是很必须的. 常用命令: 安装 Entity Framework : PM> Install-Package Ent ...

  2. Python socket模拟HTTP请求

    0x00 起 最近在做一个对时间要求比较高的扫描器,需要封装一下SOCKET模拟HTTP发包的一些常用函数.简单的说,就是重写一下requests中的get.post方法. 今天在写的时候,遇到一枚很 ...

  3. ios 保存本地数据的方法

    1. NSString *path = [[NSBundle mainBundle] pathForResource:@"文件名" ofType:@"plist" ...

  4. vs中使用过的扩展和好的nuget库

    扩展 ReAttach ReAttach gives you an easy way to ReAttaching your prior debug targets. ReAttach stores ...

  5. GPS导航仪常见术语解释

    摘自百度百科: 坐标(coordinate) 有2维.3维两种坐标表示,当GPS能够收到4颗及以上卫星的信号时,它能计算出本地的3维坐标:经度.纬度.高度,若只能收到3颗卫星的信号,它只能计算出2维坐 ...

  6. yum安装gcc

    如果服务器是自己的,并且机器就在身边,那什么都不用说了,缺少gcc顶多就是重新放入安装盘,把开发工具包安装上.但是如果是租的服务器,托管服务 方那帮人又搞不懂你说的啥子gcc,要安装gcc实在是太麻烦 ...

  7. MVC4中Ajax.BeginForm OnSuccess 不执行以及控制器返回JsonResult 提示下载的原因

    这几天学习MVC的过程中,在学习Ajax.BeginForm时,一直遇到2个问题: 一. Ajax.BeginForm OnSuccess事件不执行 二.提交表单后,浏览器不识别json字符串,提示下 ...

  8. 技术贴 本地代码与svn关联教程 svn upgrade问题解决

    背景: 以前从SVN上下载了项目源码,可是SVN抽风了,死活不显示我修改了哪些代码 自己从别人机器上搞来了项目源码,没有svn版本控制,但是svn上面有这些源码 如上两种,我想关联一下,把我本地的代码 ...

  9. PHP MSSQL数据操作PDO API

    1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 3 ...

  10. leetcode3 Two Sum III – Data structure design

    Question: Design and implement a TwoSum class. It should support the following operations: add and f ...