题意:给定n个点坐标,并且两个点已经连接,但是其他的都没有连接,但是要找出一条最短的路走过所有的点,并且路线最短。

析:这个想仔细想想,就是应该是最小生成树,把所有两点都可以连接的当作边,然后按最小生成树,写就OK了。

代码如下:

#include <cstdio>
#include <string>
#include <cstdlib>
#include <cmath>
#include <iostream>
#include <cstring>
#include <set>
#include <queue>
#include <algorithm>
#include <vector>
#include <map>
using namespace std ; typedef long long LL;
typedef pair<int, int> P;
const int INF = 0x3f3f3f3f;
const double inf = 0x3f3f3f3f3f3f3f;
const double eps = 1e-8;
const int maxn = 1000 + 5;
const int dr[] = {0, 0, -1, 1};
const int dc[] = {-1, 1, 0, 0};
int p, q, n;
int x[55], y[55];
int f[55];
int Find(int x){ return x == f[x] ? x : f[x] = Find(f[x]); }
struct node{
int u, v;
double d;
bool operator < (const node &p) const{
return d < p.d;
}
};
node a[55*55]; double dist(int i, int j){
return 1.0*(x[i] - x[j]) * (x[i] - x[j]) + 1.0*(y[i] - y[j]) * (y[i] - y[j]);
} int main(){
while(scanf("%d", &n) == 1 && n){
scanf("%d %d", &p, &q);
if(p > q) swap(p, q);
for(int i = 1; i <= n; ++i){
scanf("%d %d", &x[i], &y[i]);
f[i] = i;
}
int cnt = 0;
double ans = 0.0;
for(int i = 1; i <= n; ++i)
for(int j = i+1; j <= n; ++j){
//if(i == j) continue;
if(i == p && j == q){
int x = Find(p);
int y = Find(q);
f[y] = x;
ans += sqrt(dist(p, q));
continue;
}
a[cnt].u = i;
a[cnt].v = j;
a[cnt++].d = sqrt(dist(i, j));
}
sort(a, a+cnt); for(int i = 0; i < cnt; ++i){
int x = Find(a[i].u);
int y = Find(a[i].v);
if(x != y){
f[y] = x;
ans += a[i].d;
}
}
printf("%.2lf\n", ans);
}
return 0;
}

HDU 4463 Outlets (最小生成树)的更多相关文章

  1. HDU—4463 Outlets 最小生成树

    In China, foreign brand commodities are often much more expensive than abroad. The main reason is th ...

  2. hdu 4463 Outlets(最小生成树)

    Outlets Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) Total Submi ...

  3. 【HDU 4463 Outlets】最小生成树(prim,kruscal都可)

    以(x,y)坐标的形式给出n个点,修建若干条路使得所有点连通(其中有两个给出的特殊点必须相邻),求所有路的总长度的最小值. 因对所修的路的形状没有限制,所以可看成带权无向完全图,边权值为两点间距离.因 ...

  4. HDU 4463 Outlets(最小生成树给坐标)

    Problem Description In China, foreign brand commodities are often much more expensive than abroad. T ...

  5. HDU 4463 Outlets 【最小生成树】

    <题目链接> 题目大意: 给你一些点的坐标,要求你将这些点全部连起来,但是必须要包含某一条特殊的边,问你连起这些点的总最短距离是多少. 解题分析: 因为一定要包含那条边,我们就记录下那条边 ...

  6. hdu 4463 Outlets(最小生成树)

    题意:n个点修路,要求总长度最小,但是有两个点p.q必须相连 思路:完全图,prim算法的效率取决于节点数,适用于稠密图.用prim求解. p.q间距离设为0即可,最后输出时加上p.q间的距离 pri ...

  7. hdu 4463 Outlets

    #include<bits/stdc++.h> using namespace std; double x[100+5],y[100+5]; double e[100+5][100+5]; ...

  8. hdu Constructing Roads (最小生成树)

    题目:http://acm.hdu.edu.cn/showproblem.php?pid=1102 /************************************************* ...

  9. hdu 4463 第37届ACM/ICPC杭州赛区K题 最小生成树

    题意:给坐标系上的一些点,其中有两个点已经连了一条边,求最小生成树的值 将已连接的两点权值置为0,这样一定能加入最小生成树里 最后的结果加上这两点的距离即为所求 #include<cstdio& ...

随机推荐

  1. 宏buf_pool_t

    typedef struct buf_pool_struct buf_pool_t; struct buf_pool_struct{ /** @name General fields */ /* @{ ...

  2. $http POST 转字符串

  3. fmri降噪,利用spatial+temporal信息

    1.基于小波+高斯模型 <SPATIOTEMPORAL DENOISING AND CLUSTERING OF FMRI DATA>

  4. 从投影的角度理解pca:向量,投影,基,内积,坐标,维数,分散程度,方差,协方差矩阵,对角化,特征值分解,主成分分析PCA

    参考:http://blog.csdn.net/songzitea/article/details/18219237

  5. django - get_or_create() 使用提醒

    [omron - debug] user_id建表的时候,不能使用unique,因为一个用户,可能有多个product_id,相对应的是,get_or_create()中的查询参数,如果在建表中有un ...

  6. 随机森林与GBDT

    前言: 决策树这种算法有着很多良好的特性,比如说训练时间复杂度较低,预测的过程比较快速,模型容易展示(容易将得到的决策树做成图片展示出来)等.但是同时,单决策树又有一些不好的地方,比如说容易over- ...

  7. PS流格式

    概念: 将具有共同时间基准的一个或多个PES组合(复合)而成的单一的数据流称为节目流(Program Stream). ES是直接从编码器出来的数据流,可以是编码过的视频数据流,音频数据流,或其他编码 ...

  8. .Net中的各种序列化

    我们知道将对象的状态保持在存储媒体中,以便可以在以后重新创建精确的副本这正是数据持久化所要做的.而且,不同应用程序之间的通讯需要相互传输数据.那么序列化和反序列化正是为此而生. 序列化和反序列化 所谓 ...

  9. 不同语言的Unix时间戳

    如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)ge ...

  10. java web 学习十二(session)

    一.Session简单介绍 在WEB开发中,服务器可以为每个用户浏览器创建一个会话对象(session对象),注意:一个浏览器独占一个session对象(默认情况下).因此,在需要保存用户数据时,服务 ...