Josephina is a clever girl and addicted to Machine Learning recently. She pays much attention to a method called Linear Discriminant Analysis, which has many interesting properties.

In order to test the algorithm's efficiency, she collects many datasets. What's more, each data is divided into two parts: training data and test data. She gets the parameters of the model on training data and test the model on test data.

To her surprise, she finds each dataset's test error curve is just a parabolic curve. A parabolic curve corresponds to a quadratic function. In mathematics, a quadratic function is a polynomial function of the form f(x) = ax2 + bx + c. The quadratic will degrade to linear function if a = 0.

It's very easy to calculate the minimal error if there is only one test error curve. However, there are several datasets, which means Josephina will obtain many parabolic curves. Josephina wants to get the tuned parameters that make the best performance on all datasets. So she should take all error curves into account, i.e., she has to deal with many quadric functions and make a new error definition to represent the total error. Now, she focuses on the following new function's minimal which related to multiple quadric functions.

The new function F(x) is defined as follow:

F(x) = max(Si(x))i = 1...n. The domain of x is [0, 1000]. Si(x) is a quadric function.

Josephina wonders the minimum of F(x). Unfortunately, it's too hard for her to solve this problem. As a super programmer, can you help her?

Input

The input contains multiple test cases. The first line is the number of cases T (T < 100). Each case begins with a number n(n ≤ 10000). Following n lines, each line contains three integers a (0 ≤ a ≤ 100), b (|b| ≤ 5000), c (|c| ≤ 5000), which mean the corresponding coefficients of a quadratic function.

Output

For each test case, output the answer in a line. Round to 4 digits after the decimal point.

Sample Input

2
1
2 0 0
2
2 0 0
2 -4 2

Sample Output

0.0000
0.5000 题意:给出n条二次曲线S(x) = ax2 + bx + c(a >= 0, 0 <= x <= 1000),定义F(x)=max{Si(x)},即F(x)为取x值时n条二次曲线对应值的最大值;则你需要求出x在[0, 1000]范围内F(x)值的最小值; 分析:x在[0,1000]范围内所有F(x)值可以连成一条曲线。由于每条二次曲线S(x)都是下凸单峰函数,则F(x)=max{Si(x)}的曲线也是下凸单峰。对于单峰函数求极值,一般选用三分搜索算法。 所谓三分:把区间分为长度相等的三段进行查找,称为三分查找,三分查找通常用来迅速确定最值。
 众所周知,二分算法的要求是搜索的序列是单调序列,而三分法所面向的搜索序列的要求是:序列为一个凸性函数。
 
 
 
 与二分法类似,三分算法先把区间分为长度相等的三段,那么L与R之间就有两个点,分别是:m1=L+(R-L)/3; m2=R-(R-L)/3;
 
 如果m1比m2更靠近最值,我们就舍弃右区间,否则我们舍弃左区间。
 
 代码如下:
 #include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
const double eps = 1e-;
const int maxn = ;
int a[maxn], b[maxn], c[maxn];
int n; double F(double x)
{
double ans = a[]*x*x + b[]*x + c[];
for(int i = ; i < n; i++)
{
ans = max(ans, a[i]*x*x + b[i]*x + c[i]);
}
return ans;
} void Ternary_Search()
{
double L = 0.0, R = 1000.0;
for(int i = ; i < ; i++)
{
double m1 = L+(R-L)/;
double m2 = R-(R-L)/; if(F(m1) < F(m2)) R = m2;
else L = m1;
}
printf("%.4lf\n", F(L));
}
int main()
{ int T; scanf("%d", &T);
while(T--)
{
scanf("%d", &n);
for(int i = ; i < n; i++)
scanf("%d%d%d", &a[i], &b[i], &c[i]); Ternary_Search();
}
return ;
}

【单峰函数,三分搜索算法(Ternary_Search)】UVa 1476 - Error Curves的更多相关文章

  1. UVA 1476 - Error Curves(三分法)

    UVA 1476 1476 - Error Curves 题目链接 题意:给几条下凹二次函数曲线.然后问[0,1000]全部位置中,每一个位置的值为曲线中最大值的值,问全部位置的最小值是多少 思路:三 ...

  2. UVA - 1476 Error Curves 三分

                                           Error Curves Josephina is a clever girl and addicted to Machi ...

  3. uva 1476 - Error Curves

    对x的坐标三分: #include<cstdio> #include<algorithm> #define maxn 10009 using namespace std; do ...

  4. UVA 5009 Error Curves

    Problem Description Josephina is a clever girl and addicted to Machine Learning recently. She pays m ...

  5. 【三分搜索算法】UVa 10385 - Duathlon

    题目链接 题意:“铁人三项”比赛中,需要选手在t km的路程里进行马拉松和骑自行车项目.现有n名选手,每位选手具有不同的跑步速度和骑车速度.其中第n位选手贿赂了裁判员,裁判员保证第n名选手一定会取得冠 ...

  6. LA 5009 (HDU 3714) Error Curves (三分)

    Error Curves Time Limit:3000MS    Memory Limit:0KB    64bit IO Format:%lld & %llu SubmitStatusPr ...

  7. hdu 3714 Error Curves(三分)

    Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others) Tot ...

  8. 三分 HDOJ 3714 Error Curves

    题目传送门 /* 三分:凹(凸)函数求极值 */ #include <cstdio> #include <algorithm> #include <cstring> ...

  9. HDU-3714 Error Curves(凸函数求极值)

    Error Curves Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)Tota ...

随机推荐

  1. Java集合框架之LinkedList-----用LinkedList模拟队列和堆栈

    LinkedList的特有方法: (一)添加方法 addFisrt(E e):将指定元素插入此列表的开头.//参数e可以理解成Object对象,因为列表可以接收任何类型的对象,所以e就是Object对 ...

  2. CodeForces 682D Alyona and Strings (四维DP)

    Alyona and Strings 题目链接: http://acm.hust.edu.cn/vjudge/contest/121333#problem/D Description After re ...

  3. ntdll.dll函数原型

    /*NTDLL Base Functions*/NTSYSAPI NTSTATUS NTAPI NtAcceptConnectPort( OUT PHANDLE PortHandle, IN PVOI ...

  4. 如何在Visual Studio中选择C++和C#的编译器版本

    博客搬到了fresky.github.io - Dawei XU,请各位看官挪步.最新的一篇是:如何在Visual Studio中选择C++和C#的编译器版本.

  5. 三,对于printf函数和C语言编程的初步拓展

    前面说过了,任何程序都要有输出,所以printf函数是一个很重要的函数,所以有必要在学变量之前先拓展一下. 其实编程就是用计算机语言说话,一句一句地说,只要语法没错就能运行,至于能实现什么功能,就看编 ...

  6. iOS Foundation 框架概述文档:常量、数据类型、框架、函数、公布声明

    iOS Foundation 框架概述文档:常量.数据类型.框架.函数.公布声明 太阳火神的漂亮人生 (http://blog.csdn.net/opengl_es) 本文遵循"署名-非商业 ...

  7. 从零开始学android开发-通过WebService获取今日天气情况

    因为本身是在搞.NET方面的东东,现在在学习Android,所以想实现Android通过WebService接口来获取数据,网上很多例子还有有问题的.参考:Android 通过WebService进行 ...

  8. Jquery中$与$.fn的差别

    当今web开发往往离不开Jquery的使用,Jquery以其简洁的使用方式.良好的浏览器兼容性赢得了软件研发同行的青睐,作为当中的一员,自然也不例外,虽然刚開始时非常排斥Jquery,今天我谈一下对J ...

  9. webqq 获得好友列表hash算法 获得最新hash的方法

    webqq获得好友列表的hash算法,大约每一个月中旬会变动一次.知道怎么获得他就能够了. js文件路径 http://web.qstatic.com/webqqpic/pubapps/0/50/eq ...

  10. Swift3.0语法变化

    写在前面 首先和大家分享一下学习新语法的技巧:用Xcode8打开自己的Swift2.3的项目,选择Edit->Convert->To Current Swift Syntax- 让Xcod ...