algorithm@ Shortest Path in Directed Acyclic Graph (O(|V|+|E|) time)
Given a Weighted Directed Acyclic Graph and a source vertex in the graph, find the shortest paths from given source to all other vertices.
For a general weighted graph, we can calculate single source shortest distances in O(VE) time using Bellman–Ford Algorithm. For a graph with no negative weights, we can do better and calculate single source shortest distances in O(E + VLogV) time using Dijkstra’s algorithm. Can we do even better for Directed Acyclic Graph (DAG)? We can calculate single source shortest distances in O(V+E) time for DAGs. The idea is to use Topological Sorting.
We initialize distances to all vertices as infinite and distance to source as 0, then we find a topological sorting of the graph. Topological Sorting of a graph represents a linear ordering of the graph (See below, figure (b) is a linear representation of figure (a) ). Once we have topological order (or linear representation), we one by one process all vertices in topological order. For every vertex being processed, we update distances of its adjacent using distance of current vertex.
Following figure is taken from this source. It shows step by step process of finding shortest paths.
Following is complete algorithm for finding shortest distances.
1) Initialize dist[] = {INF, INF, ….} and dist[s] = 0 where s is the source vertex.
2) Create a toplogical order of all vertices.
3) Do following for every vertex u in topological order.
………..Do following for every adjacent vertex v of u
………………if (dist[v] > dist[u] + weight(u, v))
………………………dist[v] = dist[u] + weight(u, v)
// Java program to find single source shortest paths in Directed Acyclic Graphs
import java.io.*;
import java.util.*; class ShortestPath
{
static final int INF=Integer.MAX_VALUE;
class AdjListNode
{
private int v;
private int weight;
AdjListNode(int _v, int _w) { v = _v; weight = _w; }
int getV() { return v; }
int getWeight() { return weight; }
} // Class to represent graph as an adjcency list of
// nodes of type AdjListNode
class Graph
{
private int V;
private LinkedList<AdjListNode>adj[];
Graph(int v)
{
V=v;
adj = new LinkedList[V];
for (int i=0; i<v; ++i)
adj[i] = new LinkedList<AdjListNode>();
}
void addEdge(int u, int v, int weight)
{
AdjListNode node = new AdjListNode(v,weight);
adj[u].add(node);// Add v to u's list
} // A recursive function used by shortestPath.
// See below link for details
void topologicalSortUtil(int v, Boolean visited[], Stack stack)
{
// Mark the current node as visited.
visited[v] = true;
Integer i; // Recur for all the vertices adjacent to this vertex
Iterator<AdjListNode> it = adj[v].iterator();
while (it.hasNext())
{
AdjListNode node =it.next();
if (!visited[node.getV()])
topologicalSortUtil(node.getV(), visited, stack);
}
// Push current vertex to stack which stores result
stack.push(new Integer(v));
} // The function to find shortest paths from given vertex. It
// uses recursive topologicalSortUtil() to get topological
// sorting of given graph.
void shortestPath(int s)
{
Stack stack = new Stack();
int dist[] = new int[V]; // Mark all the vertices as not visited
Boolean visited[] = new Boolean[V];
for (int i = 0; i < V; i++)
visited[i] = false; // Call the recursive helper function to store Topological
// Sort starting from all vertices one by one
for (int i = 0; i < V; i++)
if (visited[i] == false)
topologicalSortUtil(i, visited, stack); // Initialize distances to all vertices as infinite and
// distance to source as 0
for (int i = 0; i < V; i++)
dist[i] = INF;
dist[s] = 0; // Process vertices in topological order
while (stack.empty() == false)
{
// Get the next vertex from topological order
int u = (int)stack.pop(); // Update distances of all adjacent vertices
Iterator<AdjListNode> it;
if (dist[u] != INF)
{
it = adj[u].iterator();
while (it.hasNext())
{
AdjListNode i= it.next();
if (dist[i.getV()] > dist[u] + i.getWeight())
dist[i.getV()] = dist[u] + i.getWeight();
}
}
} // Print the calculated shortest distances
for (int i = 0; i < V; i++)
{
if (dist[i] == INF)
System.out.print( "INF ");
else
System.out.print( dist[i] + " ");
}
}
} // Method to create a new graph instance through an object
// of ShortestPath class.
Graph newGraph(int number)
{
return new Graph(number);
} public static void main(String args[])
{
// Create a graph given in the above diagram. Here vertex
// numbers are 0, 1, 2, 3, 4, 5 with following mappings:
// 0=r, 1=s, 2=t, 3=x, 4=y, 5=z
ShortestPath t = new ShortestPath();
Graph g = t.newGraph(6);
g.addEdge(0, 1, 5);
g.addEdge(0, 2, 3);
g.addEdge(1, 3, 6);
g.addEdge(1, 2, 2);
g.addEdge(2, 4, 4);
g.addEdge(2, 5, 2);
g.addEdge(2, 3, 7);
g.addEdge(3, 4, -1);
g.addEdge(4, 5, -2); int s = 1;
System.out.println("Following are shortest distances "+
"from source " + s );
g.shortestPath(s);
}
}
Output:
Following are shortest distances from source 1
INF 0 2 6 5 3
Time Complexity: Time complexity of topological sorting is O(V+E). After finding topological order, the algorithm process all vertices and for every vertex, it runs a loop for all adjacent vertices. Total adjacent vertices in a graph is O(E). So the inner loop runs O(V+E) times. Therefore, overall time complexity of this algorithm is O(V+E).
algorithm@ Shortest Path in Directed Acyclic Graph (O(|V|+|E|) time)的更多相关文章
- 拓扑排序-有向无环图(DAG, Directed Acyclic Graph)
条件: 1.每个顶点出现且只出现一次. 2.若存在一条从顶点 A 到顶点 B 的路径,那么在序列中顶点 A 出现在顶点 B 的前面. 有向无环图(DAG)才有拓扑排序,非DAG图没有拓扑排序一说. 一 ...
- AOJ GRL_1_C: All Pairs Shortest Path (Floyd-Warshall算法求任意两点间的最短路径)(Bellman-Ford算法判断负圈)
题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_C All Pairs Shortest Path Input ...
- AOJ GRL_1_A: Single Source Shortest Path (Dijktra算法求单源最短路径,邻接表)
题目链接:http://judge.u-aizu.ac.jp/onlinejudge/description.jsp?id=GRL_1_A Single Source Shortest Path In ...
- The Shortest Path in Nya Graph
Problem Description This is a very easy problem, your task is just calculate el camino mas corto en ...
- (中等) HDU 4725 The Shortest Path in Nya Graph,Dijkstra+加点。
Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...
- HDU 4725 The Shortest Path in Nya Graph (最短路)
The Shortest Path in Nya Graph Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K ...
- Proof for Floyd-Warshall's Shortest Path Derivation Algorithm Also Demonstrates the Hierarchical Path Construction Process
(THIS BLOG WAS ORIGINALLY WRTITTEN IN CHINESE WITH LINK: http://www.cnblogs.com/waytofall/p/3732920. ...
- The Shortest Path in Nya Graph HDU - 4725
Problem Description This is a very easy problem, your task is just calculate el camino mas corto en ...
- HDU 4725 The Shortest Path in Nya Graph(最短路径)(2013 ACM/ICPC Asia Regional Online ―― Warmup2)
Description This is a very easy problem, your task is just calculate el camino mas corto en un grafi ...
随机推荐
- 3、REST风格的URL
1.概述 HTTP协议里面,四个表示操作方式的动词:GET.POST.PUT.DELETE,它们分别对应四种基本的操作,GET用来获取资源,POST用来新建资源,PUT用来更新资源,DELETE用来删 ...
- Nodejs实现web静态服务器对多媒体文件的支持
前几天,一个同事说他写的web静态服务器不支持音视频的播放,现简单实现一下. 原理:实现http1.1协议的range部分. 其实这一点都不神秘,我们常用的下载工具,如迅雷,下载很快,还支持断点续传, ...
- Segmentation Fault错误原因总结
最近在项目上遇到了Segmentation Fault的错误,一直调试不出来是哪里出了问题,对于刚接触嵌入式的,也不知道该如何去调试一个项目,定位内存问题,纠结了好几天,好阿红整理下自己的思路.从头开 ...
- HDFS 小文件处理——应用程序实现
在真实环境中,处理日志的时候,会有很多小的碎文件,但是文件总量又是很大.普通的应用程序用来处理已经很麻烦了,或者说处理不了,这个时候需要对小文件进行一些特殊的处理——合并. 在这通过编写java应用程 ...
- 分批次获取git for windows的源代码
$ git initInitialized empty Git repository in d:/SourceCode/GitHub/Git For Windows/Git/.git/ $ git r ...
- Android动画 三种动画
Android可以使用三种动画 Frame Animation-帧动画 ,就像GIF图片,通过一系列Drawable依次显示来模拟动画的效果 Tween Animation-补间动画,给出两个关键帧, ...
- android的ScaleGestureDetector缩放类详解
文章由多出组合,它们来自: http://elvajxw.iteye.com/blog/1308452 http://www.cnblogs.com/lknlfy/archive/2012/03/11 ...
- Android ContentProvider和Uri详解 (绝对全面)
ContentProvider的基本概念 : 1.ContentProvider为存储和读取数据提供了统一的接口 2.使用ContentProvider,应用程序可以实现数据共享 3.andr ...
- POJ3485 区间问题
题目描述有些坑.. 题意: 有一条高速公路在x轴上,从(0,0)到(L,0).周围有一些村庄,希望能够在高速公路上开通几个出口,使得每个村庄到最近的出口距离小于D,求出最少需要开通多少个出口. 解题思 ...
- bzoj2791
每个顶点有且仅有一条出边是什么意思呢 类似一棵树,树上的边都是由儿子指向父亲的,并且这个东西带着一个环 也就是一个个有向环套有向树…… 这题还是比较简单的,把环作为根然后类似lca做即可,注意细节的p ...