Hadoop体系结构之 Mapreduce
MR框架是由一个单独运行在主节点上的JobTracker和运行在每个集群从节点上的TaskTracker共同组成。主节点负责调度构成一个作业的所有任务,这些任务分布在不同的不同的从节点上。主节点监视它们的执行情况,并重新执行之前失败的任务。从节点仅负责由主节点指派的任务。当一个Job被提交时,JobTracker接受到提交作业和配置信息之后,就会将配置信息等分发给从节点,同时调度任务并监控TaskTracker的执行。JobTracker可以运行于集群中的任意一台计算机上。TaskTracker负责执行任务,它必须运行在DataNode上,DataNode既是数据存储节点,也是计算节点。JobTracker将map任务和reduce任务分发给空闲的TaskTracker,这些任务并行运行,并监控任务运行的情况。如果JobTracker出了故障,JobTracker会把任务转交给另一个空闲的TaskTracker重新运行。
Hadoop上的并行应用程序开发是基于MR编程框架。MR编程模型原理:利用一个输入的key-value对集合来产生一个输出的key-value对集合。MR库通过Map和Reduce两个函数来实现这个框架。用户自定义的map函数接受一个输入的key-value对,然后产生一个中间的key-value对的集合。MR把所有具有相同的key值的value结合在一起,然后传递个reduce函数。Reduce函数接受key和相关的value结合,reduce函数合并这些value值,形成一个较小的value集合。通常我们通过一个迭代器把中间的value值提供给reduce函数(迭代器的作用就是收集这些value值),这样就可以处理无法全部放在内存中的大量的value值集合了。
流程简而言之,大数据集被分成众多小的数据集块,若干个数据集被分在集群中的一个节点进行处理并产生中间结果。单节点上的任务,map函数一行行读取数据获得数据的(k1,v1),数据进入缓存,通过map函数执行map(基于key-value)排序(框架会对map的输出进行排序)执行后输入(k2,v2)。每一台机器都执行同样的操作。不同机器上的(k2,v2)通过merge排序的过程(shuffle的过程可以理解成reduce前的一个过程),最后reduce合并得到,(k3,v3),输出到HDFS文件中。
谈到reduce,在reduce之前,可以先对中间数据进行数据合并(Combine),即将中间有相同的key的<key,value>对合并。Combine的过程与reduce的过程类似,但Combine是作为map任务的一部分,在执行完map函数后仅接着执行。Combine能减少中间结果key-value对的数目,从而降低网络流量。
Map任务的中间结果在做完Combine和Partition后,以文件的形式存于本地磁盘上。中间结果文件的位置会通知主控JobTracker,JobTracker再通知reduce任务到哪一个DataNode上去取中间结果。所有的map任务产生的中间结果均按其key值按hash函数划分成R份,R个reduce任务各自负责一段key区间。每个reduce需要向许多个map任务节点取的落在其负责的key区间内的中间结果,然后执行reduce函数,最后形成一个最终结果。有R个reduce任务,就会有R个最终结果,很多情况下这R个最终结果并不需要合并成一个最终结果,因为这R个最终结果可以作为另一个计算任务的输入,开始另一个并行计算任务。这就形成了上面图中多个输出数据片段(HDFS副本)。
source: 总结于网络。
Hadoop体系结构之 Mapreduce的更多相关文章
- Hadoop体系结构杂谈
hadoop体系结构杂谈 今天跟一个朋友在讨论hadoop体系架构,从当下流行的Hadoop+HDFS+MapReduce+Hbase+Pig+Hive+Spark+Storm开始一直讲到HDFS的底 ...
- Hadoop体系结构
在前面的博文中,我已经介绍过Hadoop的基本概念了(见博文初识Hadoop),今天来介绍一下Hadoop的体系结构. Hadoop的两大核心是HDFS和MapReduce,而整个Hadoop的体系结 ...
- Hadoop学习笔记(一)——Hadoop体系结构
HDFS和MapReduce是Hadoop的两大核心. 整个Hadoop体系结构主要是通过HDFS来实现分布式存储的底层支持的,而且通过MapReduce来实现分布式并行任务处理的程序支持. 一.HD ...
- Hadoop 中利用 mapreduce 读写 mysql 数据
Hadoop 中利用 mapreduce 读写 mysql 数据 有时候我们在项目中会遇到输入结果集很大,但是输出结果很小,比如一些 pv.uv 数据,然后为了实时查询的需求,或者一些 OLAP ...
- 从Hadoop框架与MapReduce模式中谈海量数据处理(含淘宝技术架构) (转)
转自:http://blog.csdn.net/v_july_v/article/details/6704077 从hadoop框架与MapReduce模式中谈海量数据处理 前言 几周前,当我最初听到 ...
- 每天收获一点点------Hadoop之初始MapReduce
一.神马是高大上的MapReduce MapReduce是Google的一项重要技术,它首先是一个编程模型,用以进行大数据量的计算.对于大数据量的计算,通常采用的处理手法就是并行计算.但对许多开发者来 ...
- Hadoop权威指南:MapReduce应用开发
Hadoop权威指南:MapReduce应用开发 [TOC] 一般流程 编写map函数和reduce函数 编写驱动程序运行作业 用于配置的API Hadoop中的组件是通过Hadoop自己的配置API ...
- hadoop系列三:mapreduce的使用(一)
转载请在页首明显处注明作者与出处 http://www.cnblogs.com/zhuxiaojie/p/7224772.html 一:说明 此为大数据系列的一些博文,有空的话会陆续更新,包含大数据的 ...
- hadoop系列四:mapreduce的使用(二)
转载请在页首明显处注明作者与出处 一:说明 此为大数据系列的一些博文,有空的话会陆续更新,包含大数据的一些内容,如hadoop,spark,storm,机器学习等. 当前使用的hadoop版本为2.6 ...
随机推荐
- 启动工程Ehcache报错
缓存组建用的Ehcache,在启动的时候报了下面的错误,虽然不影响使用,看着还是有点碍眼: DEBUG net.sf.ehcache.util.UpdateChecker - Update che ...
- Shell中find中的atime、ctime、mtime的区别
Shell中find中的atime.ctime.mtime的区别 find用法: -atime n File was last accessed n*24 hours ago. 访问(读取文件或执行文 ...
- Pandas统计函数
统计方法有助于理解和分析数据的行为.现在我们将学习一些统计函数,可以将这些函数应用到Pandas的对象上. pct_change()函数 系列,DatFrames和Panel都有pct_change( ...
- Spark- 使用第三方依赖解析IP地址
使用 github上已有的开源项目1)git clone https://github.com/wzhe06/ipdatabase.git 2)编译下载的项目: mvn clean package- ...
- JQuery小知识点代码
1.链式操作 $(function(){ /*var oDiv = $('#div1'); oDiv.html('hello'); oDiv.css('background','red'); oDiv ...
- 报错 IllegalArgumentException occurred calling getter of cn.itcast.entity.Customer.cid
我碰到这个问题的时候,没有数据类型不匹配的情况,也没有表达无法向action传递数据的情况,一直报这样的错误,意思就是无法使用Customer中的get方法来赋值.完整报错如下所示: HTTP Sta ...
- es6 中的let,const
在es6中,let的作用和var差不多,都是用来声明变量的,但是他们之间的区别在于作用域不同,大家都知道在js中没有块级作用域,例如: for(var i=0;i<10;i++){ consol ...
- 云服务器用ssh登录
本地生成密钥 这里选择在购买前先在本地生成密钥key(分为private key和public key),所以先生成密钥再进行购买,购买完以后直接ssh登录,不需要输入密码(安全性考虑) 其中,pub ...
- request获取路径方式
从request获取各种路径总结 request.getRealPath("url"); // 虚拟目录映射为实际目录 request.getRealPath("./&q ...
- IOS-KVO、KVC
√ 概述 KVC/KVO是观察者模式的一种实现,在Cocoa中是以被万物之源NSObject类实现的NSKeyValueCoding/NSKeyValueObserving 非正式协议的形式被定义为 ...