发现自己学了几天splay已经傻了

其实还是一个比较裸的dp的,但是还是想了一小会,还sb的wa了几次

首先这道题的状态应该很好看出,我们用\(f[i][j]\)表示在前\(i\)个数中(即\(1-i\)中)逆序对个数为\(j\)的方案数

于是我们考虑怎么转移,我们知道逆序对这个东西并不看重实际的大小,只用关心相对大小就行了

于是\(f[i][j]\)的状态肯定来自于\(f[i-1]\),这就相当于我们向序列里加入了\(i\)

由于\(i\)比之前所有数都大,于是它在几个数的前面就会产生多少个逆序对

于是我们的方程就很好写了

\(f[i][j]=\sum_{p=0}^{j}f[i-1][p]\)

同时前\(i-1\)新产生的逆序对的数量也就是\(i-1\)了

于是对于上面那个方程我们还要有一个限制条件

那就是\(p+i-1>=j\)

于是这份暴力代码就可以写出来了

#include<iostream>
#include<cstdio>
#include<cstring>
#define re register
#define maxn 1001
using namespace std;
const int mod=10000;
int f[maxn][maxn];
int n,k;
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int main()
{
n=read();
k=read();
for(re int i=1;i<=n;i++) f[i][0]=1;
for(re int i=1;i<=n;i++)
for(re int j=1;j<=k;j++)
for(re int p=0;p<=j;p++)
if(i-1+p>=j) f[i][j]=(f[i-1][p]+f[i][j])%mod;
cout<<f[n][k]<<endl;
return 0;
}

但这份代码的复杂度显然是\(O(nk^2)\)的,于是就只有70

我们再去看看我们的方程,那是一个和式,下标还是连续的

有没有想到什么快速求和的方法

那自然是前缀和

由于我们更新\(i\)只会用到\(i-1\)

于是我们开一个滚动的前缀和数组就可以了

于是这就是代码了

#include<iostream>
#include<cstdio>
#include<cstring>
#define re register
#define maxn 1001
using namespace std;
const int mod=10000;
int f[maxn][maxn];
int n,k;
int p[2][maxn];
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int main()
{
n=read();
k=read();
for(re int i=1;i<=n;i++) f[i][0]=1;
p[0][0]=p[1][0]=1;
int now=0;
for(re int i=1;i<=k;i++)
p[now][i]=1;
for(re int i=1;i<=n;i++)
{
for(re int t=1;t<=k;t++)
p[now^1][t]=0;
for(re int j=1;j<=k;j++)
{
if(j-i+1<=0) f[i][j]=(p[now][j]+mod)%mod;
else f[i][j]=(p[now][j]-p[now][j-i]+mod)%mod;
p[now^1][j]=(f[i][j]+p[now^1][j-1])%mod;
}
now^=1;
}
cout<<f[n][k]<<endl;
return 0;
}

前缀和优化dp的思想还是很重要的,以后看到这类的方程一定要往前缀和上想

【[HAOI2009]逆序对数列】的更多相关文章

  1. bzoj2431:[HAOI2009]逆序对数列

    单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...

  2. BZOJ 2431: [HAOI2009]逆序对数列( dp )

    dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...

  3. 2431: [HAOI2009]逆序对数列

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 954  Solved: 548[Submit][Status ...

  4. P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那 ...

  5. bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列

    http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...

  6. BZOJ2431 HAOI2009 逆序对数列 【DP】*

    BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai​,如果有i<j且ai>aja_i>a_jai​>aj​,那么我们称aia ...

  7. 洛谷P2513 [HAOI2009]逆序对数列

    P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易 ...

  8. bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)

    2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec  Memory Limit: 128 MBSubmit: 2312  Solved: 1330[Submit][Stat ...

  9. Bzoj 2431 HAOI2009 逆序对数列

    Description 对于一个数列{ai},如果有i**<**j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数. ...

  10. [HAOI2009]逆序对数列

    题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样 ...

随机推荐

  1. ng-value中格式化日期

    ng-value="conferenceinfo.create_time | date:'yyyy-MM-dd'"

  2. CMS gc随记

    在查看CMS相关中文资料时,都提到了 并发预清理(Concurrent precleaning) 重新标记(STW remark) 目的是重新标记在并发标记阶段,由于对象状态的改变而标记遗漏的对象. ...

  3. html元素两种分类。替换元素和不可替换元素;块级元素和行内元素

    根据元素本身特点来分类: 替换元素替换元素根据其标签和属性来决定元素的具体显示内容.有<img><input><textarea><select>< ...

  4. Java复习第一天

    Day01 1.独立编写Hello World程序. public class Test{ public static void main(String[] args){ System.out.pri ...

  5. 如何删除eclipse中已经保存的svn密码

    一.打开eclipse--->点击Window--->点击Perference,打开eclipse配置,输入svn,然后点击svn,找到下方svn接口,查看下svn是什么类型的接口,如果是 ...

  6. 关于responseHeader的一些基础设置

    1.关于响应头的一些基础设置 //设置相应头 response.addHeader("name","zhangsan"); response.addIntHea ...

  7. Boxlayout中button改变大小

    需要先设置maximunsize neuStart.setBorder(BorderFactory.createRaisedBevelBorder()); neuStart.setMaximumSiz ...

  8. 重构指南 - 分解复杂判断(Remove Arrowhead Antipattern)

    当代码中有多层嵌套时,会降低代码的可读性,对于以后的修改也增加难度,所以我们需要分解复杂的判断并尽快返回. 重构前代码 public class Security { public ISecurity ...

  9. css3之背景定位

    属性: background-position: left top || left bottom || right top || right bottom || center center || 像素 ...

  10. RoadFlow工作流与JUI(DWZ)前端框架的集成

    此文只说明RoadFlow前端与JUI的集成,关于程序和接口请参照WebForm或MVC文档. 修改JUI配置文件dwz.frag.xml,此文件一般位于JUI根目录下. 2.修改文件js/dwz.n ...