【[HAOI2009]逆序对数列】
发现自己学了几天splay已经傻了
其实还是一个比较裸的dp的,但是还是想了一小会,还sb的wa了几次
首先这道题的状态应该很好看出,我们用\(f[i][j]\)表示在前\(i\)个数中(即\(1-i\)中)逆序对个数为\(j\)的方案数
于是我们考虑怎么转移,我们知道逆序对这个东西并不看重实际的大小,只用关心相对大小就行了
于是\(f[i][j]\)的状态肯定来自于\(f[i-1]\),这就相当于我们向序列里加入了\(i\)
由于\(i\)比之前所有数都大,于是它在几个数的前面就会产生多少个逆序对
于是我们的方程就很好写了
\(f[i][j]=\sum_{p=0}^{j}f[i-1][p]\)
同时前\(i-1\)新产生的逆序对的数量也就是\(i-1\)了
于是对于上面那个方程我们还要有一个限制条件
那就是\(p+i-1>=j\)
于是这份暴力代码就可以写出来了
#include<iostream>
#include<cstdio>
#include<cstring>
#define re register
#define maxn 1001
using namespace std;
const int mod=10000;
int f[maxn][maxn];
int n,k;
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int main()
{
n=read();
k=read();
for(re int i=1;i<=n;i++) f[i][0]=1;
for(re int i=1;i<=n;i++)
for(re int j=1;j<=k;j++)
for(re int p=0;p<=j;p++)
if(i-1+p>=j) f[i][j]=(f[i-1][p]+f[i][j])%mod;
cout<<f[n][k]<<endl;
return 0;
}
但这份代码的复杂度显然是\(O(nk^2)\)的,于是就只有70
我们再去看看我们的方程,那是一个和式,下标还是连续的
有没有想到什么快速求和的方法
那自然是前缀和
由于我们更新\(i\)只会用到\(i-1\)
于是我们开一个滚动的前缀和数组就可以了
于是这就是代码了
#include<iostream>
#include<cstdio>
#include<cstring>
#define re register
#define maxn 1001
using namespace std;
const int mod=10000;
int f[maxn][maxn];
int n,k;
int p[2][maxn];
inline int read()
{
char c=getchar();
int x=0;
while(c<'0'||c>'9') c=getchar();
while(c>='0'&&c<='9')
x=(x<<3)+(x<<1)+c-48,c=getchar();
return x;
}
int main()
{
n=read();
k=read();
for(re int i=1;i<=n;i++) f[i][0]=1;
p[0][0]=p[1][0]=1;
int now=0;
for(re int i=1;i<=k;i++)
p[now][i]=1;
for(re int i=1;i<=n;i++)
{
for(re int t=1;t<=k;t++)
p[now^1][t]=0;
for(re int j=1;j<=k;j++)
{
if(j-i+1<=0) f[i][j]=(p[now][j]+mod)%mod;
else f[i][j]=(p[now][j]-p[now][j-i]+mod)%mod;
p[now^1][j]=(f[i][j]+p[now^1][j-1])%mod;
}
now^=1;
}
cout<<f[n][k]<<endl;
return 0;
}
前缀和优化dp的思想还是很重要的,以后看到这类的方程一定要往前缀和上想
【[HAOI2009]逆序对数列】的更多相关文章
- bzoj2431:[HAOI2009]逆序对数列
单组数据比51nod的那道题还弱...而且连优化都不用了.. #include<cstdio> #include<cstring> #include<cctype> ...
- BZOJ 2431: [HAOI2009]逆序对数列( dp )
dp(i,j)表示1~i的全部排列中逆序对数为j的个数. 从1~i-1的全部排列中加入i, 那么可以产生的逆序对数为0~i-1, 所以 dp(i,j) = Σ dp(i-1,k) (j-i+1 ≤ k ...
- 2431: [HAOI2009]逆序对数列
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 954 Solved: 548[Submit][Status ...
- P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有iaj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那 ...
- bzoj千题计划153:bzoj2431: [HAOI2009]逆序对数列
http://www.lydsy.com/JudgeOnline/problem.php?id=2431 dp[i][j] 表示i的排列,有j个逆序对的方案数 加入i+1,此时i+1是排列中最大的数, ...
- BZOJ2431 HAOI2009 逆序对数列 【DP】*
BZOJ2431 HAOI2009 逆序对数列 Description 对于一个数列ai{a_i}ai,如果有i<j且ai>aja_i>a_jai>aj,那么我们称aia ...
- 洛谷P2513 [HAOI2009]逆序对数列
P2513 [HAOI2009]逆序对数列 题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易 ...
- bzoj2431: [HAOI2009]逆序对数列(前缀和优化dp)
2431: [HAOI2009]逆序对数列 Time Limit: 5 Sec Memory Limit: 128 MBSubmit: 2312 Solved: 1330[Submit][Stat ...
- Bzoj 2431 HAOI2009 逆序对数列
Description 对于一个数列{ai},如果有i**<**j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数. ...
- [HAOI2009]逆序对数列
题目描述 对于一个数列{ai},如果有i<j且ai>aj,那么我们称ai与aj为一对逆序对数.若对于任意一个由1~n自然数组成的数列,可以很容易求出有多少个逆序对数.那么逆序对数为k的这样 ...
随机推荐
- [转]Entity Framework Fluent API - Configuring and Mapping Properties and Types
本文转自:https://msdn.microsoft.com/en-us/data/jj591617#1.2 When working with Entity Framework Code Firs ...
- PHP学习5——异常处理
主要内容: PHP错误类型 异常的产生 错误日志 日志信息记录到操作系统日志 异常处理 扩展异常处理类 PHP错误类型 语法错误 执行时错误 逻辑错误 异常的产生 如果安装了xampp之后,在php. ...
- nrm的使用
我们在开发过程中,经常会使用到 npm install ,但是有时候npm是不稳定的,这就大大的降低了我们的开发效率.nrm正好解决了我们的这一痛点,他可以在不同的镜像之间切换,非常的方便. 一.n ...
- java 2018面试题-多线程汇总(含解答)
学习,内容越多.越杂的知识,越需要进行深刻的总结,这样才能记忆深刻,将知识变成自己的.这篇文章主要是对多线程的问题进行总结的,因此罗列了自己整理的多线程的问题,都是自己觉得比较经典和一些大企业面试会问 ...
- UVA 10328(DP,大数,至少连续)
http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=19825 这道题和http://www.cnblogs.com/qlky/p/ ...
- Redis 常见命令
0. 5种数据类型 String(字符串) List(列表) Hash(字典) Set(集合) Sorted Set(有序集合) 1. String 字符串 set key value 设置key=v ...
- LeetCode Find Peak Element [TBD]
说要写成对数时间复杂度,算了想不出来,写个O(n)的水了 class Solution { public: int findPeakElement(const vector<int> &a ...
- thinkphp多表联合查询
1.两个表查询 $userid=session('user.id'); $user = M('cuser'); $data = $user->field('projectno')->whe ...
- android中的内部存储与外部存储
我们先来考虑这样一个问题: 打开手机设置,选择应用管理,选择任意一个App,然后你会看到两个按钮,一个是清除缓存,另一个是清除数据,那么当我们点击清除缓存的时候清除的是哪里的数据?当我们点击清除数据的 ...
- python的继承多态以及异常处理
1.单继承 # 动物类 class Animal(object): def __init__(self, name): self. __name = name def run(self): print ...