我好弱啊。。这题调了2天QwQ

  题目大意:给定一个长度为n(n<=40000)的序列,m(m<=50000)次询问l~r之间出现次数最多的数。(区间众数)

  这题如果用主席树就可以不用处理一堆前缀和。。蓝鹅我不会~T_T~

  把序列n分成sqrt(n)块,先把所有数离散化,预处理出poi[i][j]表示第i块到第j块的众数(即出现次数最多的数)。

  询问有两种情况:

  第一种情况是l~r在某个块中,那么直接扫一遍求出众数,效率O(sqrt(n))。

  第二种情况是l~r在多个块中,l在x块,r在y块,那么我们可以把它分为三部分:①l~x块最后一个数②x+1块~y-1块③y块第一个数~r。

  因为我们求出了poi数组,所以我们可以知道第二部分的众数,显然我们只要统计一下第一部分、第三部分每个数出现的次数,将它们和第二部分的众数出现的次数进行比较,出现次数最多的数就是l~r的众数。

  而第一部分、第三部分数的个数不超过2*sqrtn(n)个,所以扫一遍第一部分、第三部分的数,效率O(sqrt(n)),问题就是怎么O(1)求出第一部分、第三部分的每个数在l~r出现的次数了。如果是O(1),那么可以想到的就是前缀和,于是我们再预处理出qzh[i][a]表示前i块中a出现的次数,qzh2[i][j][a]表示第i块前j个数中a出现的次数。那么设第一部分某个数为a,l在x块,r在y块,它在l~r中出现的次数就是:

  qzh[y-1][a]-qzh[x-1][a]-qzh2[x][(l-1)%sqrtn==0?sqrtn:(l-1)%sqrtn][a]

  +qzh2[x][(r-1)%sqrtn+1==sqrtn?0:(r-1)%sqrtn+1][a]

  【写的好丑哇QAAAAQ

  第三部分同理,然后和第二部分预处理出来的众数在l~r出现的次数(求法同理)比较找出最大的就行了。

  预处理O(nsqrt(n)),询问O(qsqrt(n)),总的时间复杂度O((n+q)sqrt(n))。

代码如下:

#include<iostream>
#include<cstring>
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<map>
using namespace std;
map<int,int>M[];
struct zs{int num,pos;}b[];
int n,m,l,r,cnt,ans,poi[][],a[],pos[],sum[],qzh[][],qzh2[][][],num[],ppos[][];
bool v[];
bool cmp(zs a,zs b){return a.num<b.num;}
int main()
{
scanf("%d %d",&n,&m);
int sqrtn=(int)ceil(sqrt(n));
for(int i=;i<=n;i++)scanf("%d",&a[i]),b[i].num=a[i],b[i].pos=i;
sort(b+,b++n,cmp);
for(int i=;i<=n;i++)
{
if(b[i].num!=b[i-].num)cnt++;
pos[b[i].pos]=cnt;
}
for(int i=;i<=sqrtn;i++)
for(int j=;j<=sqrtn;j++)
{
if((i-)*sqrtn+j<=n)if(M[i].find(a[(i-)*sqrtn+j])==M[i].end())
M[i][a[(i-)*sqrtn+j]]=++num[i];
ppos[i][pos[(i-)*sqrtn+j]]=M[i][a[(i-)*sqrtn+j]];
}
for(int i=;i<=n;i++)qzh[((i-)/sqrtn)+][pos[i]]++;
for(int i=;i<=n;i++)for(int j=;j<=sqrtn;j++)qzh[j][i]+=qzh[j-][i];
for(int i=;i<=sqrtn;i++)for(int j=;j<=sqrtn;j++)if((i-)*sqrtn+j<=n)qzh2[i][j][ppos[i][pos[(i-)*sqrtn+j]]]++;
for(int i=;i<=sqrtn;i++)
{
for(int k=;k<=sqrtn;k++)if((i-)*sqrtn+k<=n)v[pos[(i-)*sqrtn+k]]=;
for(int k=;k<=sqrtn;k++)
if((i-)*sqrtn+k<=n)
if(!v[pos[(i-)*sqrtn+k]])
{
for(int j=;j<=sqrtn;j++)
if((i-)*sqrtn+j<=n)qzh2[i][j][ppos[i][pos[(i-)*sqrtn+k]]]+=qzh2[i][j-][ppos[i][pos[(i-)*sqrtn+k]]];
v[pos[(i-)*sqrtn+k]]=;
}
}
for(int i=;i<=sqrtn;i++)
{
memset(sum,,sizeof(sum));
int max=,maxi=;
for(int j=i;j<=sqrtn;j++)
{
for(int k=;k<=sqrtn;k++)
{
int x=(j-)*sqrtn+k;
if(x>n)break;
if(++sum[pos[x]]>max||((sum[pos[x]]==max)&&(pos[x]<pos[maxi])))max=sum[pos[x]],maxi=x;
}
poi[i][j]=maxi;
}
}
for(int i=;i<=m;i++)
{
scanf("%d %d",&l,&r);
l=(l+ans-)%n+;r=(r+ans-)%n+;if(r<l)swap(l,r);
if((int)ceil(r/sqrtn)==(int)ceil(l/sqrtn))
{
int maxx=,maxi=;
memset(sum,,sizeof(sum));
for(int j=l;j<=r;j++)
if(++sum[pos[j]]>maxx||((sum[pos[j]]==maxx)&&(pos[j]<pos[maxi])))maxx=sum[pos[j]],maxi=j;
ans=a[maxi];
printf("%d\n",a[maxi]);
}else
{
int ll=-,rr=;
for(int j=;j<=sqrtn;j++)
{
if(j*sqrtn+>=l&&(ll==-))ll=j*sqrtn;
if(j*sqrtn<=r)rr=j*sqrtn;
}
int y=poi[ll/sqrtn+][rr/sqrtn];
for(int j=l;j<=ll;j++)
{
int lll=y;
int x=qzh[rr/sqrtn][pos[j]]-qzh[max(ll/sqrtn-,)][pos[j]]-qzh2[ll/sqrtn][(l-)%sqrtn==?sqrtn:(l-)%sqrtn][ppos[ll/sqrtn][pos[j]]]+qzh2[rr/sqrtn+][(r-)%sqrtn+==sqrtn?:(r-)%sqrtn+][ppos[rr/sqrtn+][pos[j]]];
y=qzh[rr/sqrtn][pos[lll]]-qzh[max(ll/sqrtn-,)][pos[lll]]-qzh2[ll/sqrtn][(l-)%sqrtn==?sqrtn:(l-)%sqrtn][ppos[ll/sqrtn][pos[lll]]]+qzh2[rr/sqrtn+][(r-)%sqrtn+==sqrtn?:(r-)%sqrtn+][ppos[rr/sqrtn+][pos[lll]]];
if(x>y||((x==y)&&pos[j]<pos[lll]))y=j;else y=lll;
}
for(int j=rr+;j<=r;j++)
{
int lll=y;
int x=qzh[rr/sqrtn][pos[j]]-qzh[max(ll/sqrtn-,)][pos[j]]-qzh2[ll/sqrtn][(l-)%sqrtn==?sqrtn:(l-)%sqrtn][ppos[ll/sqrtn][pos[j]]]+qzh2[rr/sqrtn+][(r-)%sqrtn+==sqrtn?:(r-)%sqrtn+][ppos[rr/sqrtn+][pos[j]]];
y=qzh[rr/sqrtn][pos[lll]]-qzh[max(ll/sqrtn-,)][pos[lll]]-qzh2[ll/sqrtn][(l-)%sqrtn==?sqrtn:(l-)%sqrtn][ppos[ll/sqrtn][pos[lll]]]+qzh2[rr/sqrtn+][(r-)%sqrtn+==sqrtn?:(r-)%sqrtn+][ppos[rr/sqrtn+][pos[lll]]];
if(x>y||((x==y)&&pos[j]<pos[lll]))y=j;else y=lll;
}
printf("%d\n",a[y]);ans=a[y];
}
}
}

bzoj2724: [Violet 6]蒲公英(离散化+分块)的更多相关文章

  1. bzoj2724: [Violet 6]蒲公英(分块)

    传送门 md调了一个晚上最后发现竟然是空间开小了……明明算出来够的…… 讲真其实我以前不太瞧得起分块,觉得这种基于暴力的数据结构一点美感都没有.然而今天做了这道分块的题才发现分块的暴力之美(如果我空间 ...

  2. [BZOJ2724][Violet 6]蒲公英

    [BZOJ2724][Violet 6]蒲公英 试题描述 输入 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n + 1 输出 输入示 ...

  3. BZOJ_2724_[Violet 6]蒲公英_分块

    BZOJ_2724_[Violet 6]蒲公英_分块 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod ...

  4. BZOJ2724 [Violet 6]蒲公英 分块

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2724.html 题目传送门 - BZOJ2724 题意 求区间最小众数,强制在线. $n$ 个数,$m ...

  5. 【分块】bzoj2724 [Violet 6]蒲公英

    分块,离散化,预处理出: ①前i块中x出现的次数(差分): ②第i块到第j块中的众数是谁,出现了多少次. 询问的时候,对于整块的部分直接获得答案:对于零散的部分,暴力统计每个数出现的次数,加上差分的结 ...

  6. bzoj2724: [Violet 6]蒲公英 分块 区间众数 论algorithm与vector的正确打开方式

    这个,要处理各个数的话得先离散,我用的桶. 我们先把每个块里的和每个块区间的众数找出来,那么在查询的时候,可能成为[l,r]区间的众数的数只有中间区间的众数和两边的数. 证明:若不是这里的数连区间的众 ...

  7. BZOJ.2724.[Violet 6]蒲公英(静态分块)

    题目链接 区间众数 强制在线 考虑什么样的数会成为众数 如果一个区间S1的众数为x,那么S1与新区间S2的并的众数只会是x或S2中的数 所以我们可以分块先预处理f[i][j]表示第i到第j块的众数 对 ...

  8. [BZOJ 2724] [Violet 6] 蒲公英 【分块】

    题目链接:BZOJ - 2724 题目分析 这道题和 BZOJ-2821 作诗 那道题几乎是一样的,就是直接分块,每块大小 sqrt(n) ,然后将数字按照数值为第一关键字,位置为第二关键字排序,方便 ...

  9. 【BZOJ2724】[Violet 6]蒲公英 分块+二分

    [BZOJ2724][Violet 6]蒲公英 Description Input 修正一下 l = (l_0 + x - 1) mod n + 1, r = (r_0 + x - 1) mod n ...

随机推荐

  1. MySQL日期比较

    假如有个表product有个字段add_time,它的数据类型为datetime,有人可能会这样写sql: select * from product where add_time = '2013-0 ...

  2. debian8+lnmp1.2一键安装+WordPress3.9

    下载并安装LNMP一键安装包 wget -c http://soft.vpser.net/lnmp/lnmp1.2-full.tar.gz && tar zxf lnmp1.2-ful ...

  3. ant-design学习准备_1

    在学习ant-desin过程中,发现很多知识都不清楚,从现在开始,每天将自己学习到的知识进行一个总结记录,前端大佬勿扰勿喷.先介绍几个基础概念和一些常用命令: 1.什么是脚手架 我们经常在各个博客论坛 ...

  4. django 增删改查操作 数据库Mysql

    下面介绍一下django增删改查操作: 1.view.py # -*- coding: utf-8 -*-from __future__ import unicode_literalsfrom dja ...

  5. leetcode个人题解——two sum

    这是leetcode第一题,通过较为简单. 第一题用来测试的,用的c,直接暴力法过, /** * Note: The returned array must be malloced, assume c ...

  6. Python3 小工具-TCP半连接扫描

    from scapy.all import * import optparse import threading def scan(ip,port): pkt=IP(dst=ip)/TCP(dport ...

  7. "Hello world!"团队第一次会议

    今天是我们"Hello world!"团队第一次召开会议,今天的会议可能没有那么正式,但是我们一起确立了选题——基于WEB的售票系统.博客内容是: 1.会议时间 2.会议成员 3. ...

  8. JavaScript初探系列之日期对象

    时间对象是一个我们经常要用到的对象,无论是做时间输出.时间判断等操作时都与这个对象离不开.它是一个内置对象——而不是其它对象的属性,允许用户执行各种使用日期和时间的过程. 一   Date 日期对象 ...

  9. laravel开发环境部署遇到的问题和个人感受

    >感受 用chrome浏览器 英语很重要 跟上更新的步伐 要不断学习 问问题要把问题描述清楚,先尝试解决,解决不了再问大佬 情绪要稳定,不能因为一个问题困扰两天就想放弃了 发现了 stack o ...

  10. lintcode-171-乱序字符串

    171-乱序字符串 给出一个字符串数组S,找到其中所有的乱序字符串(Anagram).如果一个字符串是乱序字符串,那么他存在一个字母集合相同,但顺序不同的字符串也在S中. 注意事项 所有的字符串都只包 ...