Hive的自定义函数无法满足实际业务的需要,所以为了扩展性,Hive官方提供了自定义函数来实现需要的业务场景。

1、定义

(1)udf(user defined function):  自定义函数,特点是输入一行,输出一行

(2)udaf(user defined aggregation function):自定义聚合函数,特点是输入多行,输出一行

(3)udtf(User-Defined Table-Generating Functions):自定义拆分函数,特点是输入一行,输出多行

2、使用

(1)开发UDF

  函数类需要继承org.apache.hadoop.hive.ql.UDF

  实现evaluate函数

 (2)开发UDAF

  函数类需要继承UDAF类,内部类Evaluator实UDAFEvaluator接口。  

  Evaluator需要实现 init、iterate、terminatePartial、merge、terminate这几个函数.

  init函数实现接口UDAFEvaluator的init函数。

  iterate接收传入的参数,并进行内部的轮转。其返回类型为boolean。

  terminatePartial无参数,其为iterate函数轮转结束后,返回轮转数据,terminatePartial类似于hadoop的Combiner。

    merge接收terminatePartial的返回结果,进行数据merge操作,其返回类型为boolean。

  terminate返回最终的聚集函数结果。

 (3)开发UDTF   

  函数类需要继承org.apache.hadoop.hive.ql.udf.generic.GenericUDTF

  实现initialize, process, close三个方法。

  initialize方法返回UDTF的返回行的信息(返回个数,类型)

  process方法对传入的参数进行处理,可以通过forword()方法把结果返回

  close()方法需要清理的方法进行清理

3.项目示例

 (1)环境搭配

  因为写函数的时候所用到的jar比较多,这里我使用的是maven自动导入。

  所以我们首先建立一个maven项目,我这里使用的是hadoop2.6.0+hive1.1.0

  在配置文件中添加一下内容,然后点击更新配置

  <repositories>

   <repository>
<id>apache</id>
<url>http://maven.apache.org</url>
</repository>
</repositories>
<dependencies>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-core</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-common</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-common</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.hadoop</groupId>
<artifactId>hadoop-mapreduce-client-jobclient</artifactId>
<version>2.6.0</version>
</dependency>
<dependency>
<groupId>org.apache.hive</groupId>
<artifactId>hive-exec</artifactId>
<version>1.1.0</version>
</dependency>
</dependencies>
(2)编写UDTF
   继承org.apache.hadoop.hive.ql.udf.generic.GenericUDTF,实现initialize, process, close三个方法。
UDTF首先会调用initialize方法,此方法返回UDTF的返回行的信息(返回个数,类型)。
初始化完成后,会调用process方法,真正的处理过程在process函数中,
在process中,每一次forward()调用产生一行;如果产生多列可以将多个列的值放在一个数组中,然后将该数组传入到forward()函数。
最后close()方法调用,对需要清理的方法进行清理。
  
  下面是一个把map(key,value)的一列切分成key,value两列的例子
  
import java.util.ArrayList;
import org.apache.hadoop.hive.ql.udf.generic.GenericUDTF;
import org.apache.hadoop.hive.ql.exec.UDFArgumentException;
import org.apache.hadoop.hive.ql.exec.UDFArgumentLengthException;
import org.apache.hadoop.hive.ql.metadata.HiveException;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.ObjectInspectorFactory;
import org.apache.hadoop.hive.serde2.objectinspector.StructObjectInspector;
import org.apache.hadoop.hive.serde2.objectinspector.primitive.PrimitiveObjectInspectorFactory; public class ExplodeMap extends GenericUDTF{ @Override
public void close() throws HiveException {
// TODO Auto-generated method stub
} @Override
   //定义返回信息和类型
public StructObjectInspector initialize(ObjectInspector[] args)
throws UDFArgumentException {
if (args.length != 1) { //定义参数个数
throw new UDFArgumentLengthException("ExplodeMap takes only one argument");
}
if (args[0].getCategory() != ObjectInspector.Category.PRIMITIVE) {//检验参数类型
throw new UDFArgumentException("ExplodeMap takes string as a parameter");
}
     //定义返回信息,这里为两列String类型的数据
ArrayList<String> fieldNames = new ArrayList<String>();
ArrayList<ObjectInspector> fieldOIs = new ArrayList<ObjectInspector>();
fieldNames.add("col1");//定义第一列
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector);
fieldNames.add("col2");//定义第二列
fieldOIs.add(PrimitiveObjectInspectorFactory.javaStringObjectInspector); return ObjectInspectorFactory.getStandardStructObjectInspector(fieldNames,fieldOIs);
} @Override
public void process(Object[] args) throws HiveException {
String input = args[0].toString();
String[] test = input.split(";");
for(int i=0; i<test.length; i++) {
try {
String[] result = test[i].split(":");
forward(result);//每一次forward产生一行数据,多列可以返回一个数组
          //注意,每次forward回去的数据必须是一个数组,数组从头到尾与之前定义的返回列对应的,result[0]对应col1,result[1]对应col2
          //每次forward产生一行数据
          //数组大小取决于你之前定义返回列数
} catch (Exception e) {
continue;
}
}
}
}

 (3)打包

  我们这里采用的是用maven的命令打包

  我们打开cmd,打开到项目porm.xml文件所在目录

  然后输入mvn clean package -DskipTests=true命令

  打包成功在文件下target目录下会找到打包好的jar包

  然后我们需要把jar放在集群中再添加到hive中

  我们打开hive

  输入

  add jar + jar包绝对路径;
  create temporary function 函数明 as '项目名.类名';

  注意这里创建的是临时函数,每次使用的时候都要进行导入。

  (4)使用

  UDTF有两种使用方法,一种直接放到select后面,一种和lateral view一起使用。

  1.直接select中使用

  select explode_map(properties) as (col1,col2) from src;

  不可以添加其他字段使用

  select a, explode_map(properties) as (col1,col2) from src

  不可以嵌套调用

  select explode_map(explode_map(properties)) from src

  不可以和group by/cluster by/distribute by/sort by一起使用

  select explode_map(properties) as (col1,col2) from src group by col1, col2

  2.和lateral view一起使用

  select src.id,
mytable.col1, mytable.col2 from src lateral view
explode_map(properties) mytable as col1, col2;

  此方法更为方便日常使用。执行过程相当于单独执行了两次抽取,然后union到一个表里。 

 

【Hive】自定义函数的更多相关文章

  1. Hive自定义函数的学习笔记(1)

    前言: hive本身提供了丰富的函数集, 有普通函数(求平方sqrt), 聚合函数(求和sum), 以及表生成函数(explode, json_tuple)等等. 但不是所有的业务需求都能涉及和覆盖到 ...

  2. hive -- 自定义函数和Transform

    hive -- 自定义函数和Transform UDF操作单行数据, UDAF:聚合函数,接受多行数据,并产生一个输出数据行 UDTF:操作单个数据 使用udf方法: 第一种: add jar xxx ...

  3. hive自定义函数(UDF)

    首先什么是UDF,UDF的全称为user-defined function,用户定义函数,为什么有它的存在呢?有的时候 你要写的查询无法轻松地使用Hive提供的内置函数来表示,通过写UDF,Hive就 ...

  4. hive自定义函数学习

    1介绍 Hive自定义函数包括三种UDF.UDAF.UDTF UDF(User-Defined-Function) 一进一出 UDAF(User- Defined Aggregation Funcat ...

  5. hive自定义函数UDF UDTF UDAF

    Hive 自定义函数 UDF UDTF UDAF 1.UDF:用户定义(普通)函数,只对单行数值产生作用: UDF只能实现一进一出的操作. 定义udf 计算两个数最小值 public class Mi ...

  6. Hive 自定义函数(转)

    Hive是一种构建在Hadoop上的数据仓库,Hive把SQL查询转换为一系列在Hadoop集群中运行的MapReduce作业,是MapReduce更高层次的抽象,不用编写具体的MapReduce方法 ...

  7. Hive 自定义函数

    hive 支持自定义UDF,UDTF,UDAF函数 以自定义UDF为例: 使用一个名为evaluate的方法 package com.hive.custom; import org.apache.ha ...

  8. Hive 自定义函数 UDF UDAF UDTF

    1.UDF:用户定义(普通)函数,只对单行数值产生作用: 继承UDF类,添加方法 evaluate() /** * @function 自定义UDF统计最小值 * @author John * */ ...

  9. Hadoop之Hive自定义函数的陷阱

    A left join B, 这个B会连到A. 如<A1,B>, <A2,B>,在处理第一条记录的时候将B.clear(),则第二条记录的B是[]空的这是自定义UDF函数必须注 ...

  10. Hive自定义函数UDF和UDTF

    UDF(user defined functions) 用于处理单行数据,并生成单个数据行. PS: l 一个普通UDF必须继承自“org.apache.hadoop.hive.ql.exec.UDF ...

随机推荐

  1. C# 创建单例你会几种方式?

    关于为什么需要创建单例?这里不过多介绍,具体百度知. 关于C#  创建单例步骤或条件吧 1.声明静态变量:2.私有构造函数(无法实例化)3.静态创建实例的方法:至于我这里的Singleton是seal ...

  2. Win10 IIS 安装.net 4.5

    更新Win10,原来的IIS站点访问不了,原因是因为IIS 没有.net 4.5,使用网上的aspnet_regiis.exe -i命令,一点都不靠谱,直接提示: C:\WINDOWS\system3 ...

  3. JavaScript:学习笔记(7)——VAR、LET、CONST三种变量声明的区别

    JavaScript:学习笔记(7)——VAR.LET.CONST三种变量声明的区别 ES2015(ES6)带来了许多闪亮的新功能,自2017年以来,许多JavaScript开发人员已经熟悉并开始使用 ...

  4. Java AOP总结

    AOP AOP(Aspect Oriented Programming),即面向切面编程,可以说是OOP(Object Oriented Programming,面向对象编程)的补充和完善.OOP引入 ...

  5. PAT 天梯赛 L1-015. 跟奥巴马一起画方块 【水】

    题目链接 https://www.patest.cn/contests/gplt/L1-015 AC代码 #include <iostream> #include <cstdio&g ...

  6. Unity 碰撞检测 OnTriggerEnter 入门

    当我们需要检测两个物体A和B发生碰撞的时候,必须要满足一下条件 1:A和B必须有碰撞边界,你可以点开一个A,在属性窗口点击AddComponent,在physis(物理)目录下看到以下这些 ,根据形状 ...

  7. CF932E Team Work(第二类斯特林数)

    题目 CF932E Team Work 前置:斯特林数\(\Longrightarrow\)点这里 做法 \[\begin{aligned}\\ &\sum\limits_{i=1}^n C_ ...

  8. 开源流量分析系统 Apache Spot 概述(转)

    原文地址http://blog.nsfocus.net/apache-spot/ Apache Spot 是一个基于网络流量和数据包分析,通过独特的机器学习方法,发现潜在安全威胁和未知网络攻击能力的开 ...

  9. MySQL详解--锁,事务(转)

    锁是计算机协调多个进程或线程并发访问某一资源的机制.在数据库中,除传统的计算资源(如CPU.RAM.I/O等)的争用以外,数据也是一种供许多用户共享的资源.如何保证数据并发访问的一致性.有效性是所有数 ...

  10. Android Studio Gradle Could not reserve enough space for object heap

    Studio 创建第一个工程报错 Error:Unable to start the daemon process.This problem might be caused by incorrect ...