PBFT算法的相关问题
PBFT(99、02年发了两篇论文)-从开始的口头算法(指数级)到多项式级
要求 n>3f
why:
个人简单理解:注意主节点是可以拜占庭的,从节点对于(n,v,m)的投票最开始也是基于主节点给的(n,v,m)。那么N个中其实有f个拜占庭,以及f个可能被拜占庭节点影响的好节点(好节点可能没收到所有应答或者收到了来自拜占庭的错误应答,为什么不能超过f?因为超过f+1可以触发视图更改),所以最后只剩下N-2f,必须大于f(f个可能的来自拜占庭节点的决策)
prepare阶段保障的是safety,确保至少有f+1个好节点收到了同样的(n,v,m)的投票,commit阶段其实为了保障liveness,保证至少f+1个好节点对于同样的(n,v,m)已经达到了确认提交,提交意味着执行,所以视图变更时,这些已经提交的操作必须传递到下一个视图,不然就得回滚(回滚是复杂的)。所以viewchange的quorum也是2f+1,保证了f+1个好节点与之相交至少存在1个好节点会正确传递上一视图的所有已提交信息,保证了liveness。
所以quorum都是2f+1是因为这里面f个应答可能是来自拜占庭节点的
PBFT算法的相关问题的更多相关文章
- 一文读懂实用拜占庭容错(PBFT)算法
在区块链中有一个著名的问题,就是拜占庭将军问题,对于拜占庭将军问题,网上的文章已经多得不要不要了,今天和大家分享的是其相关的实用拜占庭容错算法,一起来看看吧. 实用拜占庭容错算法(Practi ...
- 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)
注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...
- Lengauer-Tarjan算法的相关证明
Lengauer-Tarjan算法的相关证明 0. 约定 为简单起见,下文中的路径均指简单路径(事实上非简单路径不会对结论造成影响). \(V\)代表图的点集,\(E\)代表图的边集,\(T\)代表图 ...
- PBFT算法java实现
PBFT 算法的java实现(上) 在这篇博客中,我会通过Java 去实现PBFT中结点的加入,以及认证.其中使用socket实现网络信息传输. 关于PBFT算法的一些介绍,大家可以去看一看网上的博客 ...
- PBFT 算法 java实现(下)
PBFT 算法的java实现(下) 在上一篇博客中(如果没有看上一篇博客建议去看上一篇博客),我们介绍了使用Java实现PBFT算法中节点的加入,view的同步等操作.在这篇博客中,我将介绍PBFT算 ...
- 对PBFT算法的理解
PBFT论文断断续续读了几遍,每次读或多或少都会有新的理解,结合最近的项目代码,对于共识的原理有了更清晰的认识.虽然之前写过一篇整理PBFT论文的博客,但是当时只是知道了怎么做,却不理解为什么.现在整 ...
- 简析Monte Carlo与TD算法的相关问题
Monte Carlo算法是否能够做到一步更新,即在线学习? 答案显然是不能,如果可以的话,TD算法还有何存在的意义?MC算法必须要等到episode结束后才可以进行值估计的主要原因在于对Return ...
- EM算法和GMM算法的相关推导及原理
极大似然估计 我们先从极大似然估计说起,来考虑这样的一个问题,在给定的一组样本x1,x2······xn中,已知它们来自于高斯分布N(u, σ),那么我们来试试估计参数u,σ. 首先,对于参数估计的方 ...
- Reservoir Sampling - 蓄水池抽样算法&&及相关等概率问题
蓄水池抽样——<编程珠玑>读书笔记 382. Linked List Random Node 398. Random Pick Index 从n个数中随机选取m个 等概率随机函数面试题总结 ...
随机推荐
- Python 文件对象和方法
Python文件对象和方法 1.打开和关闭文件 Python提供了必要的函数和方法进行默认情况下的文件基本操作,我们可以用file对象做大部分文件操作. open()方法 我们必须先用Python内置 ...
- Elasticsearch cat Apis
1._cat列入所有有效命令 GET /_cat 返回:有个猫...所以不难想象为啥是cat api =^.^= /_cat/allocation /_cat/shards /_cat/shards/ ...
- BZOJ5319 & 洛谷4559 & LOJ2551:[JSOI2018]军训列队——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=5319 https://www.luogu.org/problemnew/show/P4559 ht ...
- UVA.11384 Help is needed for Dexter (思维题)
UVA.11384 Help is needed for Dexter (思维题) 题意分析 同样水题一道,这回思路对了. 给出数字n,面对一个1,2,3,4--n的数字序列,你可以对他们的部分或者全 ...
- jsp电子商务购物车之五 数据库存储篇2
业务逻辑图,简单版要写各个Servlet //ChangeCartCountServlet 使用ajax实现数量,增加或减少; package com.cart.web; import java.io ...
- 【神仙DP】【单调队列】【模拟题】区间覆盖
传送门 Description 给出数轴上的n个线段,保留最多k条线段,问这些被保留下来的线段的并集长度为最多为多少. Input 第一行两个数n和k 接下来n行,每行两个数,表示一条线段的左右端点. ...
- SELECT LOCK IN SHARE MODE and FOR UPDATE
Baronwrote nice article comparing locking hints in MySQL and SQL Server. In MySQL/Innodb LOCK IN SHA ...
- 常州模拟赛d7t3 水管
分析:第一问还是很好做的,关键是怎么做第二问.我们可以每次删掉最小生成树上的一条边,然后再求一次最小生成树,看边权和大小和原来的是不是一样的,不过这个做法效率很低. 考虑Kruskal算法的原理,每次 ...
- 如何通过反射来创建对象?getConstructor()和getDeclaredConstructor()区别?
1. 通过类对象调用newInstance()方法,适用于无参构造方法: 例如:String.class.newInstance() public class Solution { public st ...
- 【题解】Weird journey Codeforces 788B 欧拉路
传送门:http://codeforces.com/contest/788/problem/B 好题!好题! 首先图不连通的时候肯定答案是0,我们下面讨论图联通的情况 首先考虑,如果我们每条边都经过两 ...