PBFT(99、02年发了两篇论文)-从开始的口头算法(指数级)到多项式级

要求 n>3f

why:

  个人简单理解:注意主节点是可以拜占庭的,从节点对于(n,v,m)的投票最开始也是基于主节点给的(n,v,m)。那么N个中其实有f个拜占庭,以及f个可能被拜占庭节点影响的好节点(好节点可能没收到所有应答或者收到了来自拜占庭的错误应答,为什么不能超过f?因为超过f+1可以触发视图更改),所以最后只剩下N-2f,必须大于f(f个可能的来自拜占庭节点的决策)

  prepare阶段保障的是safety,确保至少有f+1个好节点收到了同样的(n,v,m)的投票,commit阶段其实为了保障liveness,保证至少f+1个好节点对于同样的(n,v,m)已经达到了确认提交,提交意味着执行,所以视图变更时,这些已经提交的操作必须传递到下一个视图,不然就得回滚(回滚是复杂的)。所以viewchange的quorum也是2f+1,保证了f+1个好节点与之相交至少存在1个好节点会正确传递上一视图的所有已提交信息,保证了liveness。

  所以quorum都是2f+1是因为这里面f个应答可能是来自拜占庭节点的

PBFT算法的相关问题的更多相关文章

  1. 一文读懂实用拜占庭容错(PBFT)算法

        在区块链中有一个著名的问题,就是拜占庭将军问题,对于拜占庭将军问题,网上的文章已经多得不要不要了,今天和大家分享的是其相关的实用拜占庭容错算法,一起来看看吧. 实用拜占庭容错算法(Practi ...

  2. 数论算法 剩余系相关 学习笔记 (基础回顾,(ex)CRT,(ex)lucas,(ex)BSGS,原根与指标入门,高次剩余,Miller_Rabin+Pollard_Rho)

    注:转载本文须标明出处. 原文链接https://www.cnblogs.com/zhouzhendong/p/Number-theory.html 数论算法 剩余系相关 学习笔记 (基础回顾,(ex ...

  3. Lengauer-Tarjan算法的相关证明

    Lengauer-Tarjan算法的相关证明 0. 约定 为简单起见,下文中的路径均指简单路径(事实上非简单路径不会对结论造成影响). \(V\)代表图的点集,\(E\)代表图的边集,\(T\)代表图 ...

  4. PBFT算法java实现

    PBFT 算法的java实现(上) 在这篇博客中,我会通过Java 去实现PBFT中结点的加入,以及认证.其中使用socket实现网络信息传输. 关于PBFT算法的一些介绍,大家可以去看一看网上的博客 ...

  5. PBFT 算法 java实现(下)

    PBFT 算法的java实现(下) 在上一篇博客中(如果没有看上一篇博客建议去看上一篇博客),我们介绍了使用Java实现PBFT算法中节点的加入,view的同步等操作.在这篇博客中,我将介绍PBFT算 ...

  6. 对PBFT算法的理解

    PBFT论文断断续续读了几遍,每次读或多或少都会有新的理解,结合最近的项目代码,对于共识的原理有了更清晰的认识.虽然之前写过一篇整理PBFT论文的博客,但是当时只是知道了怎么做,却不理解为什么.现在整 ...

  7. 简析Monte Carlo与TD算法的相关问题

    Monte Carlo算法是否能够做到一步更新,即在线学习? 答案显然是不能,如果可以的话,TD算法还有何存在的意义?MC算法必须要等到episode结束后才可以进行值估计的主要原因在于对Return ...

  8. EM算法和GMM算法的相关推导及原理

    极大似然估计 我们先从极大似然估计说起,来考虑这样的一个问题,在给定的一组样本x1,x2······xn中,已知它们来自于高斯分布N(u, σ),那么我们来试试估计参数u,σ. 首先,对于参数估计的方 ...

  9. Reservoir Sampling - 蓄水池抽样算法&&及相关等概率问题

    蓄水池抽样——<编程珠玑>读书笔记 382. Linked List Random Node 398. Random Pick Index 从n个数中随机选取m个 等概率随机函数面试题总结 ...

随机推荐

  1. Python 文件对象和方法

    Python文件对象和方法 1.打开和关闭文件 Python提供了必要的函数和方法进行默认情况下的文件基本操作,我们可以用file对象做大部分文件操作. open()方法 我们必须先用Python内置 ...

  2. Elasticsearch cat Apis

    1._cat列入所有有效命令 GET /_cat 返回:有个猫...所以不难想象为啥是cat api =^.^= /_cat/allocation /_cat/shards /_cat/shards/ ...

  3. BZOJ5319 & 洛谷4559 & LOJ2551:[JSOI2018]军训列队——题解

    https://www.lydsy.com/JudgeOnline/problem.php?id=5319 https://www.luogu.org/problemnew/show/P4559 ht ...

  4. UVA.11384 Help is needed for Dexter (思维题)

    UVA.11384 Help is needed for Dexter (思维题) 题意分析 同样水题一道,这回思路对了. 给出数字n,面对一个1,2,3,4--n的数字序列,你可以对他们的部分或者全 ...

  5. jsp电子商务购物车之五 数据库存储篇2

    业务逻辑图,简单版要写各个Servlet //ChangeCartCountServlet 使用ajax实现数量,增加或减少; package com.cart.web; import java.io ...

  6. 【神仙DP】【单调队列】【模拟题】区间覆盖

    传送门 Description 给出数轴上的n个线段,保留最多k条线段,问这些被保留下来的线段的并集长度为最多为多少. Input 第一行两个数n和k 接下来n行,每行两个数,表示一条线段的左右端点. ...

  7. SELECT LOCK IN SHARE MODE and FOR UPDATE

    Baronwrote nice article comparing locking hints in MySQL and SQL Server. In MySQL/Innodb LOCK IN SHA ...

  8. 常州模拟赛d7t3 水管

    分析:第一问还是很好做的,关键是怎么做第二问.我们可以每次删掉最小生成树上的一条边,然后再求一次最小生成树,看边权和大小和原来的是不是一样的,不过这个做法效率很低. 考虑Kruskal算法的原理,每次 ...

  9. 如何通过反射来创建对象?getConstructor()和getDeclaredConstructor()区别?

    1. 通过类对象调用newInstance()方法,适用于无参构造方法: 例如:String.class.newInstance() public class Solution { public st ...

  10. 【题解】Weird journey Codeforces 788B 欧拉路

    传送门:http://codeforces.com/contest/788/problem/B 好题!好题! 首先图不连通的时候肯定答案是0,我们下面讨论图联通的情况 首先考虑,如果我们每条边都经过两 ...