【bzoj2502】清理雪道 有上下界最小流
题目描述
输入
输入文件的第一行包含一个整数n (2 <= n <= 100) – 代表滑雪场的地点的数量。接下来的n行,描述1~n号地点出发的斜坡,第i行的第一个数为mi (0 <= mi < n) ,后面共有mi个整数,由空格隔开,每个整数aij互不相同,代表从地点i下降到地点aij的斜坡。每个地点至少有一个斜坡与之相连。
输出
样例输入
8
1 3
1 7
2 4 5
1 8
1 8
0
2 6 5
0
样例输出
4
题解
有源汇有上下界网络流“最小流”
题目中每条边都可看作上下界为[1,inf]的边。
对于每个节点x,加入s->x,容量为inf的边,加入x->t,容量为inf的边。
这样问题就转化为有源汇有上下界网络流。
再加t->s,容量为inf的边,就变为无源汇问题。
然后是求最小流。
最小流的实现方法参照 PoPoQQQ的博客 ,退流的思想很巧妙。
#include <cstdio>
#include <cstring>
#include <queue>
#define inf 0x3fffffff
using namespace std;
queue<int> q;
int head[110] , to[30000] , val[30000] , next[30000] , cnt = 1 , dis[110] , s , t , in[110];
void add(int x , int y , int z)
{
to[++cnt] = y;
val[cnt] = z;
next[cnt] = head[x];
head[x] = cnt;
}
bool bfs()
{
int x , i;
while(!q.empty()) q.pop();
memset(dis , 0 , sizeof(dis));
dis[s] = 1;
q.push(s);
while(!q.empty())
{
x = q.front() , q.pop();
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && !dis[to[i]])
{
dis[to[i]] = dis[x] + 1;
if(to[i] == t) return 1;
q.push(to[i]);
}
}
}
return 0;
}
int dinic(int x , int low)
{
if(x == t) return low;
int temp = low , i , k;
for(i = head[x] ; i ; i = next[i])
{
if(val[i] && dis[to[i]] == dis[x] + 1)
{
k = dinic(to[i] , min(temp , val[i]));
if(!k) dis[to[i]] = 0;
val[i] -= k , val[i ^ 1] += k;
if(!(temp -= k)) break;
}
}
return low - temp;
}
int main()
{
int n , i , c , y , ans , tempid;
scanf("%d" , &n);
for(i = 1 ; i <= n ; i ++ )
{
scanf("%d" , &c);
while(c -- )
{
scanf("%d" , &y);
in[i] -- , in[y] ++ ;
add(i , y , inf) , add(y , i , 0);
}
}
add(n + 1 , 0 , inf) , tempid = cnt , add(0 , n + 1 , 0);
s = n + 2 , t = n + 3;
for(i = 1 ; i <= n ; i ++ )
{
add(0 , i , inf) , add(i , 0 , 0);
add(i , n + 1 , inf) , add(n + 1 , i , 0);
if(in[i] > 0) add(s , i , in[i]) , add(i , s , 0);
if(in[i] < 0) add(i , t , -in[i]) , add(t , i , 0);
}
while(bfs()) dinic(s , inf);
for(i = head[s] ; i ; i = next[i]) val[i] = val[i ^ 1] = 0;
for(i = head[t] ; i ; i = next[i]) val[i] = val[i ^ 1] = 0;
ans = val[tempid ^ 1];
val[tempid] = val[tempid ^ 1] = 0;
add(s , n + 1 , inf) , add(n + 1 , s , 0);
add(0 , t , inf) , add(t , 0 , 0);
while(bfs()) ans -= dinic(s , inf);
printf("%d\n" , ans);
return 0;
}
【bzoj2502】清理雪道 有上下界最小流的更多相关文章
- BZOJ2502:清理雪道(有上下界最小流)
Description 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时 ...
- BZOJ 2502: 清理雪道 | 有上下界最小流
#include<cstdio> #include<algorithm> #include<cstring> #include<queue> #defi ...
- [BZOJ2502]清理雪道 有上下界网络流(最小流)
2502: 清理雪道 Time Limit: 10 Sec Memory Limit: 128 MB Description 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场 ...
- BZOJ_2502_清理雪道_有源汇上下界最小流
BZOJ_2502_清理雪道_有源汇上下界最小流 Description 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道), ...
- BZOJ 2502 清理雪道(有源汇上下界最小流)
题面 滑雪场坐落在FJ省西北部的若干座山上. 从空中鸟瞰,滑雪场可以看作一个有向无环图,每条弧代表一个斜坡(即雪道),弧的方向代表斜坡下降的方向. 你的团队负责每周定时清理雪道.你们拥有一架直升飞机, ...
- BZOJ 2502 清理雪道/ Luogu P4843 清理雪道 (有源汇上下界最小流)
题意 有一个有向无环图,求最少的路径条数覆盖所有的边 分析 有源汇上下界最小流板题,直接放代码了,不会的看dalao博客:liu_runda 有点长,讲的很好,静心看一定能看懂 CODE #inclu ...
- BZOJ 1458 / Luogu P4311 士兵占领 (上下界最小流 / 直接最大流)
做法1:上下界最小流 先来一发上下界最小流,思路比较暴力,就是把行和列看作n+mn+mn+m个点,(i,j)(i,j)(i,j)如果能占领就从第iii行向第jjj列连一条边,上界为1下界为0;然后从s ...
- P4843 清理雪道(上下界网络流)
P4843 清理雪道 上下界最小流 我们先搞一遍上下界可行流(转) 回忆上下界最大流的写法:在可行流的残量网络$s\ -\ t$上跑最大流,答案为可行流$+$残量网络的最大流 那么上下界最小流的写法呢 ...
- sgu 176 Flow construction(有源汇的上下界最小流)
[题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=11025 [模型] 有源汇点的上下界最小流.即既满足上下界又满足 ...
随机推荐
- Caliburn.Micro 杰的入门教程6, Screens 和 Conductors 简介
Caliburn.Micro 杰的入门教程1(翻译)Caliburn.Micro 杰的入门教程2 ,了解Data Binding 和 Events(翻译)Caliburn.Micro 杰的入门教程3, ...
- 北京Uber优步司机奖励政策(12月28日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 南京Uber优步司机奖励政策(12月28日到1月3日)
滴快车单单2.5倍,注册地址:http://www.udache.com/ 如何注册Uber司机(全国版最新最详细注册流程)/月入2万/不用抢单:http://www.cnblogs.com/mfry ...
- 数据库路由中间件MyCat - 背景篇(2)
此文已由作者张镐薪授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. MyCat的前世今生 如前文所说,Amoeba.Cobar.MyCat等属于同宗一脉.若Amoeba能继续下 ...
- 一文带你了解 Raft 一致性协议的关键点
此文已由作者孙建良授权网易云社区发布. 欢迎访问网易云社区,了解更多网易技术产品运营经验. Raft 协议的发布,对分布式行业是一大福音,虽然在核心协议上基本都是师继 Paxos 祖师爷(lampor ...
- Xuan.UWP.Framework(2)
上一章主要介绍了Xuan.UWP.Framework.ImageLib的基本用法,这一章具体来看些Xuan.UWP.Framework.ImageLib的使用. 一.首先看下Xuan.UWP.Fram ...
- Linux用户切换和密码修改
1.普通用户切换到root su - 再输入root密码,密码正确,成功切换,再输入exit则切换回普通用户 2.root切换到其他用户,例user su - user 再输入exit,则切换回roo ...
- 敏捷开发学习笔记-Agile development(AM)
以人为核心,迭代,循序渐进 项目被切分为多个子项目,每个子项目都经过测试,具备集成和可运行的特征 5个价值观:沟通.简单.反馈.勇气.谦逊 敏捷模型与瀑布模型的区别 相对于瀑布模型,提高开发效率和 ...
- 【system.file】使用说明
对象:system.file 说明:提供一系列针对文件操作的方法. 注意:参数中的filePath 均为相对网站根目录路径 目录: 方法 返回 说明 system.file.exists(filePa ...
- javascript常用对象方法
concat:连接产生一个新数组 [1,2].concat([3,4]) >> [1, 2, 3, 4] filter:返回符合条件的一个新数组 [1,2,3,4,5].filte ...