题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$

题解:扩展欧拉定理,求出$\varphi(p)$即可。因为$2^{2^{2^{\dots}}}>>p$,所以其实每一次算的时候都可以直接加上$\varphi(p)$,不用判断

卡点:

C++ Code:

#include <cstdio>

namespace Math {
const int N = 1e7 + 1; int pri[N], ptot, phi[N];
bool notp[N];
inline void sieve() {
phi[1] = 1;
for (int i = 2; i < N; i++) {
if (!notp[i]) phi[pri[ptot++] = i] = i - 1;
for (int j = 0, t; j < ptot && (t = i * pri[j]) < N; j++) {
notp[t] = true;
if (i % pri[j] == 0) {
phi[t] = phi[i] * pri[j];
break;
}
phi[t] = phi[i] * phi[pri[j]];
}
}
} inline long long pw(int b, int p, const int mod) {
long long res = 1, base = b, tmp = 0;
for (; p; p >>= 1) {
if (p & 1) {
res = res * base;
if (res >= mod) tmp = mod, res %= mod;
}
base = base * base;
if (base >= mod && p >> 1) tmp = mod, base %= mod;
}
return res + tmp;
}
}
using Math::phi; int Tim, p;
long long solve(int p) {
if (p == 1) return p;
return Math::pw(2, solve(phi[p]), p);
}
int main() {
Math::sieve();
scanf("%d", &Tim);
while (Tim --> 0) {
scanf("%d", &p);
printf("%lld\n", solve(p) % p);
}
return 0;
}

  

[洛谷P4139]上帝与集合的正确用法的更多相关文章

  1. 洛谷 P4139 上帝与集合的正确用法 解题报告

    P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...

  2. 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]

    题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...

  3. 题解-洛谷P4139 上帝与集合的正确用法

    上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...

  4. 洛谷 P4139 上帝与集合的正确用法

    题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...

  5. 洛谷P4139 上帝与集合的正确用法 拓欧

    正解:拓展欧拉定理 解题报告: 首先放上拓欧公式? if ( b ≥ φ(p) )  ab ≡ ab%φ(p)+φ(p)(mod p)else ab≡ab mod φ(p) (mod p) 首先利用扩 ...

  6. 【洛谷】P4139 上帝与集合的正确用法

    题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的:  第一天,上帝创造了一个世界的基本元素,称做“元”.  第二天,上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...

  7. P4139 上帝与集合的正确用法

    本题是欧拉定理的应用.我这种蒟蒻当然不知道怎么证明啦! 那么我们就不证明了,来直接看结论: ab≡⎧⎩⎨⎪⎪ab%φ(p)abab%φ(p)+φ(p)gcd(a,p)=1gcd(a,p)≠1,b< ...

  8. Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925

    题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过 ...

  9. luogu P4139 上帝与集合的正确用法(扩展欧拉定理)

    本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...

随机推荐

  1. tarjan算法求最近公共祖先

    tarjian算法 LCA: LCA(Least Common Ancestor),顾名思义,是指在一棵树中,距离两个点最近的两者的公共节点.也就是说,在两个点通往根的道路上,肯定会有公共的节点,我们 ...

  2. (AOSP)repo checkout指定版本

    aosp 怎么切换分支? To properly switch Android version, all you need to change is branch for your manifest ...

  3. PHP数组中插入元素

    1. array_unshift()数组头插入新元素 $fruits = array('apple','pear','banana','orange'); array_unshift($fruits, ...

  4. R语言使用过程中出现的问题--读取EXCEL文件

    方法一: 按照R导论中的方法,使用RODBC包, library(RODBC) channel<-odbcConnectExcel("file.xlsx") da2<- ...

  5. libevent学习八(evbuffer)

    1.evbuffer以队列的形式管理字节,从尾部添加,从头部取出(FIFO) 2.evbuffer内部存储形式是多个独立的连续内存       接口 //创建和删除 struct evbuffer * ...

  6. unity3d 角色头顶信息3D&2D遮挡解决方案(一)

    先上效果图,只凭文字描述,脑补应该有些困难- - 如图:有三个角色(我们暂且从左到右叫它们A.B.C),一个2D UI(中间动作选择的框框),一个cube(右边的方块) cube挡住了角色C的头顶信息 ...

  7. 「Python」conda与pip升级所有的包

    conda: conda update --a pip: pip freeze --local | grep -v '^-e' | cut -d = -f 1 | xargs -n1 sudo pip ...

  8. hdu2544最短路(floyd基础)

    最短路 Time Limit: 5000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

  9. Fiddler使用总结(一)

    Fiddler基础知识 .Fiddler是强大的抓包工具,它的原理是以web代理服务器的形式进行工作的,使用的代理地址是:127.0.0.1,端口默认为8888,我们也可以通过设置进行修改. .代理就 ...

  10. Linux命令应用大词典-第14章 显示登录用户

    14.1 w:详细查询已登录当前计算机的用户 14.2 who:显示已登录当前计算机用户的简单信息 14.3 whoami:显示与当前的有效ID相关联的用户名 14.4 logname:显示当前用户的 ...