题目大意:多次询问,每次给你$p$询问$2^{2^{2^{\dots}}}\bmod p$

题解:扩展欧拉定理,求出$\varphi(p)$即可。因为$2^{2^{2^{\dots}}}>>p$,所以其实每一次算的时候都可以直接加上$\varphi(p)$,不用判断

卡点:

C++ Code:

#include <cstdio>

namespace Math {
const int N = 1e7 + 1; int pri[N], ptot, phi[N];
bool notp[N];
inline void sieve() {
phi[1] = 1;
for (int i = 2; i < N; i++) {
if (!notp[i]) phi[pri[ptot++] = i] = i - 1;
for (int j = 0, t; j < ptot && (t = i * pri[j]) < N; j++) {
notp[t] = true;
if (i % pri[j] == 0) {
phi[t] = phi[i] * pri[j];
break;
}
phi[t] = phi[i] * phi[pri[j]];
}
}
} inline long long pw(int b, int p, const int mod) {
long long res = 1, base = b, tmp = 0;
for (; p; p >>= 1) {
if (p & 1) {
res = res * base;
if (res >= mod) tmp = mod, res %= mod;
}
base = base * base;
if (base >= mod && p >> 1) tmp = mod, base %= mod;
}
return res + tmp;
}
}
using Math::phi; int Tim, p;
long long solve(int p) {
if (p == 1) return p;
return Math::pw(2, solve(phi[p]), p);
}
int main() {
Math::sieve();
scanf("%d", &Tim);
while (Tim --> 0) {
scanf("%d", &p);
printf("%lld\n", solve(p) % p);
}
return 0;
}

  

[洛谷P4139]上帝与集合的正确用法的更多相关文章

  1. 洛谷 P4139 上帝与集合的正确用法 解题报告

    P4139 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做"元". 第二天, 上帝创造了一个新 ...

  2. 洛谷P4139 上帝与集合的正确用法 [扩展欧拉定理]

    题目传送门 上帝与集合的正确用法 题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”. ...

  3. 题解-洛谷P4139 上帝与集合的正确用法

    上帝与集合的正确用法 \(T\) 组数据,每次给定 \(p\),求 \[\left(2^{\left(2^{\left(2^{\cdots}\right)}\right)}\right)\bmod p ...

  4. 洛谷 P4139 上帝与集合的正确用法

    题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的: 第一天, 上帝创造了一个世界的基本元素,称做“元”. 第二天, 上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...

  5. 洛谷P4139 上帝与集合的正确用法 拓欧

    正解:拓展欧拉定理 解题报告: 首先放上拓欧公式? if ( b ≥ φ(p) )  ab ≡ ab%φ(p)+φ(p)(mod p)else ab≡ab mod φ(p) (mod p) 首先利用扩 ...

  6. 【洛谷】P4139 上帝与集合的正确用法

    题目描述 根据一些书上的记载,上帝的一次失败的创世经历是这样的:  第一天,上帝创造了一个世界的基本元素,称做“元”.  第二天,上帝创造了一个新的元素,称作“α”.“α”被定义为“元”构成的集合.容 ...

  7. P4139 上帝与集合的正确用法

    本题是欧拉定理的应用.我这种蒟蒻当然不知道怎么证明啦! 那么我们就不证明了,来直接看结论: ab≡⎧⎩⎨⎪⎪ab%φ(p)abab%φ(p)+φ(p)gcd(a,p)=1gcd(a,p)≠1,b< ...

  8. Luogu P4139 上帝与集合的正确用法【扩展欧拉定理】By cellur925

    题目传送门 题目中的式子很符合扩展欧拉定理的样子.(如果你还不知扩展欧拉定理,戳).对于那一堆糟心的2,我们只需要递归即可,递归边界是模数为1. 另外,本题中好像必须要用快速乘的样子...否则无法通过 ...

  9. luogu P4139 上帝与集合的正确用法(扩展欧拉定理)

    本蒟蒻现在才知带扩展欧拉定理. 对于任意的\(b\geq\varphi(p)\)有 \(a^b\equiv a^{b\ mod\ \varphi(p)+\varphi(p)}(mod\ p)\) 当\ ...

随机推荐

  1. AT+CGDCONT=0,"IP","ctnb"设置问题

    发现有的时候,设置不成功,经过验证正确的方法是,模组刚上电,或者刚复位的时候,先发送AT+CFUN=1,然后再去设置APN AT+CFUN= OK AT+CGDCONT=,"IP" ...

  2. C#如何使用反射实现通过字符串创建类

    在做项目中碰到一个问题,就是如何在知道一个类的名字,如何创建这个类呢.做的一个小测试,直接贴代码了. using System; using System.Collections.Generic; u ...

  3. AirtestIDE实践二:Poco框架试用

    上一篇用airtest框架做了一个梦幻西游手游的DEMO,这次看看poco的强大之处.首先安装poco:pip install pocoui 其次,把SDK集成到你家游戏中,我这直接用官网提供的一个U ...

  4. 【SpringCloud】第三篇: 服务消费者(Feign)

    前言: 必需学会SpringBoot基础知识 简介: spring cloud 为开发人员提供了快速构建分布式系统的一些工具,包括配置管理.服务发现.断路器.路由.微代理.事件总线.全局锁.决策竞选. ...

  5. Python文件操作大全

    Python 编程文件操作大全   文件打开模式 打开模式 执行操作 'r' 以只读方式打开文件(默认) 'w' 以写入的方式打开文件,会覆盖已存在的文件 'x' 如果文件已经存在,使用此模式打开将引 ...

  6. word record 4

    word record 4 pledge p le g vt. 保证,许诺 snowflake falke->n. 小薄片:火花 deputy de piu ti n. 代理人,代表 etch ...

  7. 2018牛客多校第二场a题

    一个人可以走一步或者跳x步,但不能连着跳,问到这个区间里有几种走法 考虑两种状态  对于这一点,我可以走过来,前面是怎么样的我不用管,也可以跳过来但是,跳过来必须保证前一步是走的 dp[i][0]表示 ...

  8. RL_Learning

    Key Concepts in RL 标签(空格分隔): RL_learning OpenAI Spinning Up原址 states and observations (状态和观测) action ...

  9. Java程序员自我介绍

    有关Java程序员的面试自我介绍范文(一) 我叫XXX,今年21岁,毕业于XX解放军信息工程大学计算机科学与技术专业,拥有扎实的Core Java基础,良好的编程风格;熟悉JSP+Servlet+Ja ...

  10. js单行写一个评级组件

    单行写一个评级组件:"★★★★★☆☆☆☆☆".slice(5 - rate, 10 - rate); -----------------------------------分隔符- ...