题面

BZOJ传送门

思路

首先当然是推式子

对于一个询问点$(x_0,y_0$和给定向量$(x_1,y_1)$来说,点积这么表达:

$A=x_0x_1+y_0y_1$

首先肯定是考虑大小关系:$x_0x_1+y_0y_1\geq x_0x_2+y_0y_2$

然后其实会发现这条路走不通

那么还有什么办法呢?我们发现上面的式子里面是有$Ans$存在的

那我们尝试把$Ans$搞进去

$y_1=-\frac{x_0}{y_0}x_1+\frac{A}{y_0}$

诶,半平面出来了= =

实际上,这里相当于是有一条斜率为$\frac{x_0}{y_0}$的过原点的直线,点$(x_1,y_1)$到这条直线的距离就是$\frac{Ans}{y_0}$

那么这样就好做了:当$y_0 > 0$时,我们只要找到给定点集中的上凸包顶端的那个店,就是答案;反之则是下凸包底端的点

再考虑到:题目中是区间询问,有限制,考虑使用线段树

线段树的话有一个问题:不能每次插入一个新的节点就update一次凸包吧?肯定是不行的

但是发现,线段树区间询问的性质决定了,它只会在已经被完整覆盖(也就是目前插入的数量等于区间长度)的点上跑二分询问

那么我们可以只在一个线段树节点的所有覆盖的位置都已经被插入的时候才求出它的上下凸包

这样大大降低了复杂度,变为$O(n\log^2n)$

Code

#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cassert>
#include<vector>
#define eps 1e-9
#define ll long long
using namespace std;
inline int read(){
int re=0,flag=1;char ch=getchar();
while(!isdigit(ch)){
if(ch=='-') flag=-1;
ch=getchar();
}
while(isdigit(ch)) re=(re<<1)+(re<<3)+ch-'0',ch=getchar();
return re*flag;
}
struct node{
ll x,y;
node(ll xx=0,ll yy=0){x=xx;y=yy;}
inline friend bool operator <(const node &a,const node &b){return (a.x==b.x)?(a.y<b.y):(a.x<b.x);}
inline friend node operator -(const node &a,const node &b){return node(a.x-b.x,a.y-b.y);}
inline friend ll operator *(const node &a,const node &b){return a.x*b.y-a.y*b.x;}
inline friend ll operator /(const node &a,const node &b){return a.x*b.x+a.y*b.y;}
};
vector<node>seg[1600010],q1[1600010],q2[1600010];int top1[1600010],top2[1600010],n;
inline void insert(int l,int r,int num,int pos,node p){
seg[num].push_back(p);
int mid=(l+r)>>1,i;
if(pos==r){//只有完全插入的时候才求凸包
sort(seg[num].begin(),seg[num].end());
int &t1=(top1[num]),&t2=(top2[num]);
for(i=0;i<r-l+1;i++){
while(t1>0&&(q1[num][t1]-q1[num][t1-1])*(q1[num][t1]-seg[num][i])<eps) q1[num].pop_back(),t1--;
q1[num].push_back(seg[num][i]);t1++;
while(t2>0&&(q2[num][t2]-q2[num][t2-1])*(q2[num][t2]-seg[num][i])>-eps) q2[num].pop_back(),t2--;
q2[num].push_back(seg[num][i]);t2++;
}
}
if(l==r) return;
if(mid>=pos) insert(l,mid,num<<1,pos,p);
else insert(mid+1,r,num<<1|1,pos,p);
}
inline ll query1(int l,int r,int ql,int qr,int num,node p){
if(l>=ql&&r<=qr){
int L=1,R=top1[num],MID,ANS=0;
while(L<=R){
MID=(L+R)>>1;
if(q1[num][MID]/p>q1[num][MID-1]/p) ANS=MID,L=MID+1;
else R=MID-1;
}
return q1[num][ANS]/p;
}
int mid=(l+r)>>1;ll re=-1e18;
if(mid>=ql) re=max(re,query1(l,mid,ql,qr,num<<1,p));
if(mid<qr) re=max(re,query1(mid+1,r,ql,qr,num<<1|1,p));
return re;
} inline ll query2(int l,int r,int ql,int qr,int num,node p){
if(l>=ql&&r<=qr){
int L=1,R=top2[num],MID,ANS=0;
while(L<=R){
MID=(L+R)>>1;
if(q2[num][MID]/p>q2[num][MID-1]/p) ANS=MID,L=MID+1;
else R=MID-1;
}
return q2[num][ANS]/p;
}
int mid=(l+r)>>1;ll re=-1e18;
if(mid>=ql) re=max(re,query2(l,mid,ql,qr,num<<1,p));
if(mid<qr) re=max(re,query2(mid+1,r,ql,qr,num<<1|1,p));
return re;
}
int main(){
memset(top1,-1,sizeof(top1));
memset(top2,-1,sizeof(top2));
n=read();int i,cntn=0,t1,t2,t3,t4;ll lastans=0;char op[10],s[10];
scanf("%s",op);
for(i=1;i<=n;i++){
scanf("%s",s);t1=read();t2=read();
if(s[0]=='Q') t3=read(),t4=read();
if(op[0]!='E'){
t1^=(lastans&0x7fffffff);
t2^=(lastans&0x7fffffff);
if(s[0]=='Q'){
t3^=(lastans&0x7fffffff);
t4^=(lastans&0x7fffffff);
}
}
if(s[0]=='Q'){
if(t2>0) lastans=query1(1,n,t3,t4,1,node(t1,t2));
else lastans=query2(1,n,t3,t4,1,node(t1,t2));
printf("%lld\n",lastans);
}
else insert(1,n,1,++cntn,node(t1,t2));
}
}

[SDOI2014][BZOJ3533] 向量集 [线段树+凸包]的更多相关文章

  1. bzoj 3533 [Sdoi2014]向量集 线段树+凸包+三分(+动态开数组) 好题

    题目大意 维护一个向量集合,在线支持以下操作: "A x y (|x|,|y| < =10^8)":加入向量(x,y); "Q x y l r (|x|,|y| & ...

  2. BZOJ3533:[SDOI2014]向量集(线段树,三分,凸包)

    Description 维护一个向量集合,在线支持以下操作: "A x y (|x|,|y| < =10^8)":加入向量(x,y); " Q x y l r (| ...

  3. 【bzoj3533】[Sdoi2014]向量集 线段树+STL-vector维护凸包

    题目描述 维护一个向量集合,在线支持以下操作:"A x y (|x|,|y| < =10^8)":加入向量(x,y);"Q x y l r (|x|,|y| < ...

  4. bzoj 3533: [Sdoi2014]向量集 线段树维护凸包

    题目大意: http://www.lydsy.com/JudgeOnline/problem.php?id=3533 题解: 首先我们把这些向量都平移到原点.这样我们就发现: 对于每次询问所得到的an ...

  5. BZOJ 3533: [Sdoi2014]向量集( 线段树 + 三分 )

    答案一定是在凸壳上的(y>0上凸壳, y<0下凸壳). 线段树维护, 至多N次询问, 每次询问影响O(logN)数量级的线段树结点, 每个结点O(logN)暴力建凸壳, 然后O(logN) ...

  6. 「SDOI2014」向量集 解题报告

    「SDOI2014」向量集 维护一个向量集合,在线支持以下操作: A x y :加入向量 \((x, y)\): Q x y l r:询问第 \(L\) 个到第 \(R\) 个加入的向量与向量 \(( ...

  7. 【BZOJ4311】向量(线段树分治,斜率优化)

    [BZOJ4311]向量(线段树分治,斜率优化) 题面 BZOJ 题解 先考虑对于给定的向量集,如何求解和当前向量的最大内积. 设当前向量\((x,y)\),有两个不同的向量\((u1,v1),(u2 ...

  8. UVA1455 - Kingdom(并查集 + 线段树)

    UVA1455 - Kingdom(并查集 + 线段树) 题目链接 题目大意:一个平面内,给你n个整数点,两种类型的操作:road x y 把city x 和city y连接起来,line fnum ...

  9. 【SDOI2014】向量集

    [SDOI2014]向量集 题目描述 我们分析一波: 假设我们询问\((A,B)\),\(x_i>x_j\)若 \[ A\cdot x_i+B\cdot y_i>A\cdot x_j+B\ ...

随机推荐

  1. springboot 常用依赖

    <?xml version="1.0" encoding="UTF-8"?><project xmlns="http://maven ...

  2. Nginx+Tomcat多站点访问默认主页问题-狒狒完美解决-Q9715234

    <Engine name="Catalina" defaultHost="www.abc.com"> <Host name="www ...

  3. 使用CRF做命名实体识别(三)

    摘要 本文主要是对近期做的命名实体识别做一个总结,会给出构造一个特征的大概思路,以及对比所有构造的特征对结构的影响.先给出我最近做出来的特征对比: 目录 整体操作流程 特征的构造思路 用CRF++训练 ...

  4. Win10 远程服务器版

    朋友的电脑刚装了1803版的Win10,然后他用KMS_VL_ALL6.9激活了一下,竟然变成了一个奇怪的版本:“远程服务器版”!第一次见这玩意,还真稀罕.帮他研究了一下,发现KMS_VL_ALL在激 ...

  5. vs找不到lib以及编译的link过程中出现的问题

    1.#pragma comment 程序中已经通过该语句完成lib库的引入,如果再在input里面添加lib库就会报错: 2.要在general的“导入外部库”的设置选项的目录下面添加引用到的lib库 ...

  6. JDK1.8改为JDK1.7过程

    电脑之前eclipse版本要求JDK1.8版本,现在要用jboss7.1做性能测试,目前仅支持JDK7.故需要降级. 网上有很多说把1.8删掉,这种做法我是不建议的,那么要用的时候呢?又得装回来多蛋疼 ...

  7. selenium--driver.switchTo()

    在自动化测试中,会遇到多窗口.多iframe.多alert的情况.此时,会使用driver.switchTo()来解决. 下面时关于driver.switchTo()的详细介绍: 1.多windows ...

  8. 三分钟小课堂-----------------docker(三)增删改查命令

    主要为docker容器的增删改查命令 1  创建容器: docker run   -it   --name 别名  image_name   /bin/bash --name 别名 -d 后台 -t ...

  9. 试用Markdown来写东西

    试用Markdown来写东西 前言 之前有过一段时间的写东西的习惯,但是后来因为各种原因(主要是因为自己懒惰拖延),所以一直没有写,现在想再开始写,目的很明确,就是发现很多时候,写作能够很好的练习自己 ...

  10. LeetCode - 463. Island Perimeter - O(MN)- (C++) - 解题报告

    原题 原题链接 You are given a map in form of a two-dimensional integer grid where 1 represents land and 0 ...