最近的题解的故事背景割。

题目:
描述

在靠近南极的某处,一些企鹅站在许多漂浮的冰块上。由于企鹅是群居动物,所以它们想要聚集到一起,在同一个冰块上。企鹅们不想把自己的身体弄湿,所以它们在冰块之间跳跃,但是它们的跳跃距离有一个上限。
随着气温的升高,冰块开始融化,并出现了裂痕。而企鹅跳跃的压力,使得冰块的破裂加速。幸运的是,企鹅对冰块十分有研究,它们能知道每块冰块最多能承受多少次跳跃。对冰块的损害只在跳起的时候产生,而落地时并不对其产生伤害。
现在让你来帮助企鹅选择一个冰面使得它们可以聚集到一起。

输入

第一行一个正数:数据个数,最多100个。之后:

第一行整数N,和浮点数D,表示冰块的数目和企鹅的最大跳跃距离。
(1≤N ≤100) (0 ≤D ≤100 000),
接下来N行,xi, yi, ni and mi,分别表示冰块的X和Y坐标,该冰块上的企鹅数目,以及还能承受起跳的次数。

输出

每个数据:

输出所有可能的相聚冰块的编号,以0开始。如果不能相遇,输出-1。

样例输入

2
5 3.5
1 1 1 1
2 3 0 1
3 5 1 1
5 1 1 1
5 4 0 1
3 1.1
-1 0 5 10
0 0 3 9
2 0 1 1
样例输出

1 2 4
-1

攒的有点多先写一道。
简单点说:网络流的题,自己建一个源点,源点连向每个冰块,容量为该冰块企鹅数。
冰块分为入点和出点,入点到出点容量为起跳次数。
一个冰块能跳到另一个冰块,则前者出点连后者入点,容量INF,后者出点连前者入点,容量INF。
枚举汇点。

#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int maxn=;
const int INF=;
struct{
int next;
int to;
int w;
int cun;
}edge[maxn*maxn];
int head[maxn],cnt=-;
void add(int u,int v,int w){//u起点v终点w容量
cnt++;
edge[cnt].to=v;
edge[cnt].w=w;
edge[cnt].next=head[u];
edge[cnt].cun=w;
head[u]=cnt;
}
int lev[maxn],cur[maxn];//lev层数,cur[i]为以i为起点的边的编号
bool bfs(int m,int zong){//m为汇点,有zong个点
int dui[zong+],r=;//队列和右指针
for(int i=;i<=zong;i++){//初始化
lev[i]=-;
cur[i]=head[i];
}
dui[]=,lev[]=;
int u,v;//u起点v终点
for(int l=;l<=r;l++){//左指针
u=dui[l];
for(int e=head[u];e!=-;e=edge[e].next){
v=edge[e].to;
if(edge[e].w>&&lev[v]==-){//1.能走 2.未分层
lev[v]=lev[u]+;
r++;
dui[r]=v;//v入队
if(v==m)return ;//分层完毕
}
}
}
return ;//无法分层
}
int dinic(int u,int flow,int m){//u当前点,flow为下面的点能够分配多大的流量,m终点
if(u==m)return flow;//终点直接全流入
int res=,delta;//res实际流量
for(int &e=cur[u];e!=-;e=edge[e].next){//'&'相当于cur[u]=e;即流满的边不会再被扫一次
int v=edge[e].to;
if(edge[e].w>&&lev[u]<lev[v]){//只能从低层往高层流
delta=dinic(v,min(edge[e].w,flow-res),m);
if(delta>){//如果增广
edge[e].w-=delta;//正向边容量减少
edge[e^].w+=delta;//反向边仍量增加(暗示退流)
res+=delta;//扩张流量增加
if(res==flow)break;//可流的都流完了,及时跳出
}
}
}
if(res!=flow)lev[u]=-;//没流完,说明以后不能从这个点流出任何流量,那就不需要这个点了
return res;
}
double suan(int a1,int b1,int a2,int b2){
return sqrt(pow((a2-a1),)+pow((b2-b1),));
}
int a[],b[],c[],e[];
int main(){
int t;
scanf("%d",&t);
while(t--){
int n;
double d;
int sum=;
scanf("%d%lf",&n,&d);
for(int i=;i<=maxn;i++){
head[i]=-;
}
cnt=-;
for(int i=;i<=n;i++){
scanf("%d%d%d%d",&a[i],&b[i],&c[i],&e[i]);
add(i*,i*+,e[i]);
add(i*+,i*,);
sum+=c[i];
}
for(int i=;i<=n;i++){
for(int j=;j<=n;j++){
if(i==j)continue;
if(suan(a[i],b[i],a[j],b[j])<=d){
add(i*+,j*,INF);
add(j*,i*+,);
}
}
}
for(int i=;i<=n;i++){
if(c[i]!=){
add(,i*,c[i]);
add(i*,,);
}
}
int ok=;
int first=;
for(int i=;i<=n;i++){
int zui=i*;
int ans=;
while(bfs(zui,*n+)==){
ans+=dinic(,INF,zui);
}
if(ans==sum){
if(first!=)printf(" ");
printf("%d",i-);//编号以0开始所以-1(才不是我懒得改了)
first=;
ok=;
}
for(int i=;i<=cnt;i++){
edge[i].w=edge[i].cun;
}
}
if(ok==)printf("-1");
printf("\n");
}
return ;
}
 

POJ3498:March of the Penguins——题解的更多相关文章

  1. poj 3498 March of the Penguins(拆点+枚举汇点 最大流)

    March of the Penguins Time Limit: 8000MS   Memory Limit: 65536K Total Submissions: 4873   Accepted: ...

  2. [POJ 3498] March of the Penguins

    March of the Penguins Time Limit: 8000MS   Memory Limit: 65536K Total Submissions: 4378   Accepted:  ...

  3. 【POJ3498】March of the Penguins(最大流,裂点)

    题意:在靠近南极的某处,一些企鹅站在许多漂浮的冰块上.由于企鹅是群居动物,所以它们想要聚集到一起,在同一个冰块上.企鹅们不想把自己的身体弄湿,所以它们在冰块之间跳跃,但是它们的跳跃距离,有一个上限.  ...

  4. March of the Penguins

    poj3498:http://poj.org/problem?id=3498 题意:某个冰块上有a只企鹅,总共可以跳出去b只,问是否可能所有的企鹅都跳到某一块冰块上,输出所有的可能的冰块的编号. 由于 ...

  5. POJ 3498 March of the Penguins(网络最大流)

    Description Somewhere near the south pole, a number of penguins are standing on a number of ice floe ...

  6. hdu 2334 March of the Penguins

      题意大意 在X,Y坐标系中有N(N<=100)个冰块,有些冰块上有1若干只企鹅,每只企鹅一次最多跳M距离,一个冰块在有Mi个企鹅离开,就会消失,问有哪些冰块可以作为集合点,就是所有企鹅都能成 ...

  7. poj 3498 March of the Penguins(最大流+拆点)

    题目大意:在南极生活着一些企鹅,这些企鹅站在一些冰块上,现在要让这些企鹅都跳到同一个冰块上.但是企鹅有最大的跳跃距离,每只企鹅从冰块上跳走时会给冰块造成损害,因此企鹅跳离每个冰块都有次数限制.找出企鹅 ...

  8. UVA 12125 March of the Penguins

    题意: 给定一些冰块,每个冰块上有一些企鹅,每个冰块有一个可以跳出的次数限制,每个冰块位于一个坐标,现在每个企鹅跳跃力为d,问所有企鹅能否跳到一点上,如果可以输出所有落脚冰块,如果没有方案就打印-1 ...

  9. UVALive-3972 March of the Penguins (最大流:节点容量)

    题目大意:有n个带有裂缝的冰块.已知每个冰块的坐标和已经站在上面的企鹅数目,每当一个企鹅从一个冰块a跳到另一个冰块b上的时候,冰块a上的裂缝便增大一点,还知道每个冰块上最多能被跳跃的次数.所有的企鹅都 ...

随机推荐

  1. cakephp中find('list')的使用

    运用一.快速实现下拉菜单 控制器中,使用find('list')返回的是键值对的数组,键名是array的第一个参数id,键值就是第二个参数content. public function list_s ...

  2. macOS 10.13 High Sierra PHP开发环境配置

    命令:sudo rm /usr/local/mysql sudo rm -rf /usr/local/mysql* sudo rm -rf /Library/StartupItems/MySQLCOM ...

  3. Ruby 基础教程1-5

    1.条件语句 if unless case        unless和if相反,条件不成立则执行   2.条件  除了 false和nil 其他都是true   3.unless 语法        ...

  4. RabbitMQ基础教程之使用进阶篇

    RabbitMQ基础教程之使用进阶篇 相关博文,推荐查看: RabbitMq基础教程之安装与测试 RabbitMq基础教程之基本概念 RabbitMQ基础教程之基本使用篇 I. 背景 前一篇基本使用篇 ...

  5. Selenium 入门到精通系列:六

    Selenium 入门到精通系列 PS:Checkbox方法 例子 HTML: <html> <head> <title>测试页面</title> &l ...

  6. Linux命令应用大词典-第44章 PPPoE配置

    44.1 pppoe-setup:配置PPPoE客户端 44.2 ppoe-connect:管理PPPoE链路 44.3 pppoe-start:启动PPPoE链路 44.4 pppoe-stop:关 ...

  7. Vue 兄弟组件通信(不使用Vuex)

    Vue 兄弟组件通信(不使用Vuex) 项目中,我们经常会遇到兄弟组件通信的情况.在大型项目中我们可以通过引入vuex轻松管理各组件之间通信问题,但在一些小型的项目中,我们就没有必要去引入vuex.下 ...

  8. html常用小知识

    请求重定向:加载页面之后,除了用js做重定向之外,我们还可以直接用<meta>标签做重定向. <meta http-equiv="refresh" content ...

  9. LeetCode 445——两数相加 II

    1. 题目 2. 解答 2.1 方法一 在 LeetCode 206--反转链表 和 LeetCode 2--两数相加 的基础上,先对两个链表进行反转,然后求出和后再进行反转即可. /** * Def ...

  10. Leetcode - 557. Reverse Words in a String III (C++) stringstream

    1. 题目:https://leetcode.com/problems/reverse-words-in-a-string-iii/discuss/ 反转字符串中的所有单词. 2. 思路: 这题主要是 ...