BZOJ1008:[HNOI2008]越狱——题解
https://www.lydsy.com/JudgeOnline/problem.php?id=1008
监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种。如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱
正难则反(反正我没想到,定式思维想求发生越狱结果根本求不出来orz)
m^n是总状态数。
不发生越狱时,第一个人可以选m个宗教,往后所有人只能选n-1个宗教。
所以答案为m^n-m*(m-1)^(n-1)
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std;
typedef long long ll;
const ll p=;
ll qpow(ll k,ll n){
ll res=;
while(n){
if(n&)res=res*k%p;
k=k*k%p;
n>>=;
}
return res;
}
ll m,n;
int main(){
scanf("%lld%lld",&m,&n);
printf("%lld\n",((qpow(m,n)-m*qpow(m-,n-)%p)%p+p)%p);
return ;
}
BZOJ1008:[HNOI2008]越狱——题解的更多相关文章
- bzoj1008: [HNOI2008]越狱 数学公式+快速幂
bzoj1008: [HNOI2008]越狱 O(log N)---------------------------------------------------------------- ...
- bzoj1008 [HNOI2008]越狱
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 5099 Solved: 2207 Description 监狱有 ...
- BZOJ1008: [HNOI2008]越狱-快速幂+取模
1008: [HNOI2008]越狱 Time Limit: 1 Sec Memory Limit: 162 MBSubmit: 8689 Solved: 3748 Description 监狱有 ...
- [HNOI2008]越狱 题解(容斥原理+快速幂)
[HNOI2008]越狱 Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多 ...
- 洛谷 P3197 [HNOI2008]越狱 题解
P3197 [HNOI2008]越狱 题目描述 监狱有连续编号为 \(1-N\) 的 \(N\) 个房间,每个房间关押一个犯人,有 \(M\) 种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗 ...
- BZOJ1008 [HNOI2008]越狱 快速幂
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ1008 题意概括 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可 ...
- [BZOJ1008] [HNOI2008] 越狱 (数学)
Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 In ...
- [bzoj1008](HNOI2008)越狱(矩阵快速幂加速递推)
Description 监狱有连续编号为1...N的N个房间,每个房间关押一个犯人,有M种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱 In ...
- BZOJ1008: [HNOI2008]越狱(组合数)
题目描述 监狱有连续编号为 1…N1…N 的 NN 个房间,每个房间关押一个犯人,有 MM 种宗教,每个犯人可能信仰其中一种.如果相邻房间的犯人的宗教相同,就可能发生越狱,求有多少种状态可能发生越狱. ...
随机推荐
- package.json中的devDependencies和dependencies有啥区别?
如果你的项目是发布到npm的一个包, 那么这个包的package.json中的dependencies中的依赖是会被下载下来到这个包的node_modules文件夹中的(如果你的项目本身没有这个依赖) ...
- hdu5305 Friends(dfs,多校题)
Friends Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total Sub ...
- .NET MVC和.NET WEB api混用时注意事项
1.同时配置了mvc路由和api路由时,mvc路由无法访问(调用所有mvc路由全部404错误) 在Global.asax中,需注意路由注册的顺序,将api路由注册放在最后: 即将 void Appli ...
- 第3章 TCP协议详解
第3章 TCP协议详解 3.1 TCP服务的特点 传输协议主要有两个:TCP协议和UDP协议,TCP协议相对于UDP协议的特点是 面向连接使用TCP协议通信的双方必须先建立连接,完成数据交换后,通信双 ...
- 深入理解java虚拟机学习笔记(一)
第二章 Java内存区域与内存溢出异常 运行时数据区域 程序计数器(Program Counter Register) 程序计数器:当前线程所执行的字节码行号指示器.各条线程之间计数器互不影响,独立存 ...
- appium 元素定位与操作:
一.常用识别元素的工具 uiautomator:Android SDK自带的一个工具,在tools目录下 monitor:Android SDK自带的一个工具,在tools目录下 Appium I ...
- SpringCloud IDEA 教学 (二) Eureka Service
写在开头 本篇继续介绍基于Eureka的SpringCloud微服务搭建,回顾一下搭建过程, 第一步:建立一个服务注册中心: 第二步:建立微服务并注入到注册中心: 第三步:建立client端来访问微服 ...
- BZOJ 4361 isn 容斥+dp+树状数组
题目链接:https://www.lydsy.com/JudgeOnline/problem.php?id=4361 题意概述: 给出一个长度为N的序列A(A1,A2...AN).如果序列A不是非降的 ...
- Python练习—文件
1.随机生成20个两位正整数,将其升序排序后再写入文本文件data_asc.txt中! import random alist = [random.randint(10,100) for i in r ...
- java鼠标操控小程序
最近在做一个软工的屏幕监控软件,已经实现了屏幕图片的传输,但是没有鼠标,才发现键盘上的PtrScSysRq键所截到图是没有鼠标信息的.== 暂时只需实现鼠标的移动事件,用robot.mouseMove ...