[PKUSC2018]真实排名

题目大意:

有\(n(n\le10^5)\)个人,每个人有一个成绩\(A_i(0\le A_i\le10^9)\)。定义一个人的排名为\(n\)个人中成绩不小于他的总人数。现在恰好有\(k\)个人的成绩翻倍。问对于每个人,有多少种情况满足这个人的排名不变。

思路:

排名不变的情况不外乎两种:

  1. \(A_i\)本身不翻倍,且满足\(\lfloor\frac{A_i+1}2\rfloor\le A_j<A_i\)的\(A_j\)均不翻倍。
  2. \(A_i\)本身翻倍,且满足\(A_i\le A_j<2A_i\)的\(A_j\)均翻倍。

对\(A_{1\sim n}\)进行排序,设排序后的数组为\(tmp\)。令:

  • p=std::lower_bound(&tmp[1],&tmp[n]+1,(a[i]+1)/2)-tmp-1
  • q=std::lower_bound(&tmp[1],&tmp[n]+1,a[i])-tmp
  • r=std::lower_bound(&tmp[1],&tmp[n]+1,a[i]*2)-tmp+!a[i]

其中\(p\)的-1是为了方便将\(A_i\)本身也算入不翻倍的部分,而\(r\)的+!a[i]是考虑\(A_i=0\)的情况,将\(A_i\)自身算入翻倍的部分。

显然,对于第一种情况,方案数为\(\binom{n-q+p}k\);对于第二种情况,方案数为\(\binom{n-r+q}{k-r+q}\)。

组合数可以直接预处理阶乘及阶乘逆元,剩下主要是排序和二分。时间复杂度\(\mathcal O(n\log n)\)。

源代码:

#include<cstdio>
#include<cctype>
#include<algorithm>
typedef long long int64;
inline int getint() {
register char ch;
while(!isdigit(ch=getchar()));
register int x=ch^'0';
while(isdigit(ch=getchar())) x=(((x<<2)+x)<<1)+(ch^'0');
return x;
}
const int N=1e5+1,mod=998244353;
int a[N],tmp[N],fact[N],factinv[N];
void exgcd(const int &a,const int &b,int &x,int &y) {
if(!b) {
x=1,y=0;
return;
}
exgcd(b,a%b,y,x);
y-=a/b*x;
}
inline int inv(const int &x) {
int ret,tmp;
exgcd(x,mod,ret,tmp);
return (ret%mod+mod)%mod;
}
inline int C(const int &n,const int &m) {
if(n<m||n<0||m<0) return 0;
return (int64)fact[n]*factinv[m]%mod*factinv[n-m]%mod;
}
int main() {
const int n=getint(),k=getint();
for(register int i=1;i<=n;i++) {
tmp[i]=a[i]=getint();
}
std::sort(&tmp[1],&tmp[n]+1);
for(register int i=fact[0]=1;i<=n;i++) {
fact[i]=(int64)fact[i-1]*i%mod;
}
factinv[n]=inv(fact[n]);
for(register int i=n;i;i--) {
factinv[i-1]=(int64)factinv[i]*i%mod;
}
for(register int i=1;i<=n;i++) {
const int p=std::lower_bound(&tmp[1],&tmp[n]+1,(a[i]+1)/2)-tmp-1;
const int q=std::lower_bound(&tmp[1],&tmp[n]+1,a[i])-tmp;
const int r=std::lower_bound(&tmp[1],&tmp[n]+1,a[i]*2)-tmp+!a[i];
printf("%d\n",(C(n-q+p,k)+C(n-r+q,k-r+q))%mod);
}
return 0;
}

[PKUSC2018]真实排名的更多相关文章

  1. 【LOJ4632】[PKUSC2018]真实排名

    [LOJ4632][PKUSC2018]真实排名 题面 终于有题面啦!!! 题目描述 小 C 是某知名比赛的组织者,该比赛一共有 \(n\) 名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排 ...

  2. BZOJ_5368_[Pkusc2018]真实排名_组合数

    BZOJ_5368_[Pkusc2018]真实排名_组合数 Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他 ...

  3. [PKUSC2018]真实排名——线段树+组合数

    题目链接: [PKUSC2018]真实排名 对于每个数$val$分两种情况讨论: 1.当$val$不翻倍时,那么可以翻倍的是权值比$\frac{val-1}{2}$小的和大于等于$val$的. 2.当 ...

  4. BZOJ5368:[PKUSC2018]真实排名(组合数学)

    Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是:成绩不小于他的选手的数量(包括他自己). 例如如果333位选手的成绩分别 ...

  5. bzoj 5368: [Pkusc2018]真实排名

    Description 小C是某知名比赛的组织者,该比赛一共有n名选手参加,每个选手的成绩是一个非负整数,定义一个选手的排名是 :成绩不小于他的选手的数量(包括他自己).例如如果3位选手的成绩分别是[ ...

  6. bzoj5368 [Pkusc2018]真实排名

    题目描述: bz luogu 题解: 组合数计数问题. 首先注意排名指的是成绩不小于他的选手的数量(包括他自己). 考虑怎么增大才能改变排名. 小学生都知道,对于成绩为$x$的人,让他自己不动并让$\ ...

  7. 【洛谷5368】[PKUSC2018] 真实排名(组合数学)

    点此看题面 大致题意: 有\(n\)个数字,定义一个数的排名为不小于它的数的个数.现要随机将其中\(k\)个数乘\(2\),求对于每个数有多少种方案使其排名不变. 分类讨论 对于这种题目,我们可以分类 ...

  8. Luogu P5368 [PKUSC2018]真实排名

    老年选手只会做SB题了(还调了好久) 很容易想到分类讨论,按第\(i\)个人有没有翻倍来算 若\(a_i\)未翻倍,显然此时将\([0,\lceil \frac{a_i}{2}\rceil)\)的数和 ...

  9. LOJ6432 [PKUSC2018] 真实排名 【组合数】

    题目分析: 做三个指针然后预处理阶乘就行. 题目代码: #include<bits/stdc++.h> using namespace std; ; ; int n,k; struct n ...

随机推荐

  1. Python模块学习 - Functools

    Functools模块 Higher-order functions and operations on callable objects,看这个标题我都是懵逼的,这都是啥啥啥啊,赶紧拿出百度翻译:可 ...

  2. Python标准库笔记(2) — re模块

    re模块提供了一系列功能强大的正则表达式(regular expression)工具,它们允许你快速检查给定字符串是否与给定的模式匹配(match函数), 或者包含这个模式(search函数).正则表 ...

  3. Caffe学习笔记4图像特征进行可视化

    Caffe学习笔记4图像特征进行可视化 本文为原创作品,未经本人同意,禁止转载,禁止用于商业用途!本人对博客使用拥有最终解释权 欢迎关注我的博客:http://blog.csdn.net/hit201 ...

  4. Linux C中内联汇编的语法格式及使用方法(Inline Assembly in Linux C)【转】

    转自:http://www.linuxidc.com/Linux/2013-06/85221p3.htm 阅读Linux内核源码或对代码做性能优化时,经常会有在C语言中嵌入一段汇编代码的需求,这种嵌入 ...

  5. java===java习题---Josephu问题

    package testbotoo; /** * * @author */ public class Demo4 { public static void main(String[] args) { ...

  6. Mysql安装发生「Access denied for user ‘root’@’localhost’ (using password: NO)」错误

    参考:http://www.aipacommander.com/entry/2014/05/26/152247 mysql_secure_installation 依赖重置密码

  7. Tomcat+Apache 负载均衡

    1.JDK1.8和Tomcat7.0不兼容,支持Tomcat8.0. 集群架构图: 2.负载均衡:负载的基础是集群,集群就是一组连在一起的计算机,从外部看它是一个系统,各节点可以是不同的操作系统或不同 ...

  8. 用JavaScript校验日期的合法性

    校验表单时可能会遇到校验日期是否正确.可以利用JS的内置对象Date帮助我们完成日期校验. 思路是首先用被校验日期(假设为A,可能为字符串或数字)创建一个Date对象(假设为B). 然后判断A和B的年 ...

  9. linux命令(42):wc命令

    Linux系统中的wc(Word Count)命令的功能为统计指定文件中的字节数.字数.行数,并将统计结果显示输出. 1.命令格式: wc [选项]文件... 2.命令功能: 统计指定文件中的字节数. ...

  10. BootStrap 实现导航栏nav透明,nav子元素文字不透明

    在给nav 的属性赋值 opacity:0.0透明度时会导致nav内子元素会继承opacity属性.此时再对子元素赋值opacity:1.0 时会导致 子元素实际opacity值为0.0*1.0=0. ...