部分图片转自:http://www.cnblogs.com/grandyang/p/4475985.html

manacher算法(民间称马拉车算法233)是用来找字符串中的最长回文子串的,先来说一下什么是回文串,像这样“abcba”这样一个字符串找到一个中间位置,然后分别向他的左边和右边相等的距离位置的字符是相同的,那么这个字符串就称为回文串,“abcba”这个字符串的len为5是奇数,我们可以找到一个中间字符,然后进行搜索也可以找出来(当然时间复杂度是比较高的),但是当我们遇到一个长度为偶数的字符串时该怎么找中间字符呢,像这样“abccba”,下面我们引入Manacher算法,这是一个可以将长度为奇数或偶数的字符串一起考虑的神奇算法

Manacher算法可以将长度为奇数和偶数的回文串一起考虑:在原字符串的相邻字符串之间插入一个分隔符,字符串的首尾也要分别添加,注意分隔符必须是原字符串中没有出现过的

原字符串s a b a b c
转换后字符串str # a # b # a # b # c #

一、Len数组的简单介绍

Manacher算法中用到一个非常重要的辅助数组Len[i]表示以str[i]为中心的最长回文子串的最右端到str[i]位置的长度,比如以str[i]为中心的最长回文串是str[l,r],那么Len[i]=r-i+1

转换后的字符串str # a # b # a # b # c #
Len 1 2 1 4 1 4 1 2 1 2 1

Len[i]数组有一个性质,Len[i]-1就等于该回文串在原串s中的长度

证明:在转换后的字符串str中,所有的回文串的长度都是奇数,那么对于以str[i]为中心的最长回文串的长度为2*Len[i]-1,其中又有Len[i]个分隔符,所以在原字符串中的长度就是Len[i]-1,那么剩下的工作就是求Len数组

二、Len数组的计算

从左往右开始计算,假设0<=j<=i,那么在计算Len[i]时,Len[j]已经计算过了,设mx为之前计算过的最长回文串的右端点,id为取得这个端点值得位置(那么Len[id]=mx-id+1)

第一种情况:i<=mx.

找到i相对于id的对称位置,设为j,再次分为两种情况:

1、Len[j]<mx-i

mx的对称点为2*id-mx,i和j所包含的范围是2*Len[j]-1

那么说明以j为中心的回文串一定在以id为中心的回文串内部,且i和j关于id对称,由回文串的定义可知,一个回文串反过来仍是回文串,所以以i为中心的回文串长度至少和以i为中心的回文串长度相等,即Len[i]>=Len[j].因为Len[j]<mx-i所以i+Len[j]<mx,由对称性可知Len[i]=Len[j].

2、Len[j]>=mx-i

由对称性说明以i为中心的回文串可能延伸到mx之外,而大于mx的部分我们还没有进行匹配,所以要从mx+1位置开始一个一个匹配直到失配,从而更新mx和对应的id以及Len[i]

第二种情况,i>mx

如果i比mx还大,说明对于中点为i的回文串一点都没匹配,这个时候只能一个个匹配(滑稽),匹配完成后更新mx的位置和对应的id及Len[i].

代码实现:

#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int maxn=1e6+;
char s[maxn*],str[maxn*];
int Len[maxn*],len; void getstr()
{
int k=;
str[k++]='$';
for(int i=;i<len;i++)
str[k++]='#',
str[k++]=s[i];
str[k++]='#';
len=k;
}
void Manacher()
{
getstr();
int mx=,id;
for(int i=;i<len;i++)
{
if(mx>i) Len[i]=min(Len[*id-i],mx-i);
else Len[i]=;
while(str[i+Len[i]]==str[i-Len[i]])
Len[i]++;
if(Len[i]+i>mx)
mx=Len[i]+i,id=i;
}
}
int main()
{
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)
{
scanf("%s",&s);
len=strlen(s);
Manacher();
int ans=;
for(int i=;i<len;i++) ans=max(ans,Len[i]);
printf("%d\n",ans-);
}
return ;
}

Manacher算法总结的更多相关文章

  1. HDU3068 回文串 Manacher算法

    好久没有刷题了,虽然参加过ACM,但是始终没有融会贯通,没有学个彻底.我干啥都是半吊子,一瓶子不满半瓶子晃荡. 就连简单的Manacher算法我也没有刷过,常常为岁月蹉跎而感到后悔. 问题描述 给定一 ...

  2. manacher算法专题

    一.模板 算法解析:http://www.felix021.com/blog/read.php?2040 *主要用来解决一个字符串中最长回文串的长度,在O(n)时间内,线性复杂度下,求出以每个字符串为 ...

  3. lintcode最长回文子串(Manacher算法)

    题目来自lintcode, 链接:http://www.lintcode.com/zh-cn/problem/longest-palindromic-substring/ 最长回文子串 给出一个字符串 ...

  4. 1089 最长回文子串 V2(Manacher算法)

    1089 最长回文子串 V2(Manacher算法) 基准时间限制:1 秒 空间限制:131072 KB 分值: 0 难度:基础题  收藏  关注 回文串是指aba.abba.cccbccc.aaaa ...

  5. 51nod1089(最长回文子串之manacher算法)

    题目链接: https://www.51nod.com/onlineJudge/questionCode.html#!problemId=1089 题意:中文题诶~ 思路: 我前面做的那道回文子串的题 ...

  6. LeetCode 5 Longest Palindromic Substring manacher算法,最长回文子序列,string.substr(start,len) 难度:2

    https://leetcode.com/problems/longest-palindromic-substring/ manacher算法相关:http://blog.csdn.net/ywhor ...

  7. 求最长回文子串:Manacher算法

    主要学习自:http://articles.leetcode.com/2011/11/longest-palindromic-substring-part-ii.html 问题描述:回文字符串就是左右 ...

  8. 【转】最长回文子串的O(n)的Manacher算法

    Manacher算法 首先:大家都知道什么叫回文串吧,这个算法要解决的就是一个字符串中最长的回文子串有多长.这个算法可以在O(n)的时间复杂度内既线性时间复杂度的情况下,求出以每个字符为中心的最长回文 ...

  9. Manacher算法

    Manacher算法是求回文串最高效的算法,能在线性时间内求出以每一个字符为中心的最长回文串.   首先,我们都能想出$O(N^2)$求出每一个字符为中心的最长回文串的算法.那么我们考虑这样一种情况. ...

  10. 字符串匹配--manacher算法模板

    manacher算法主要是处理字符串中关于回文串的问题的,它可以在 O(n) 的时间处理出以字符串中每一个字符为中心的回文串半径,由于将原字符串处理成两倍长度的新串,在每两个字符之间加入一个特定的特殊 ...

随机推荐

  1. Linux while 和 read 的用法

    Reference: [ linux man doc ] [ CSDN roler_ ] [ Reads from the file descriptor] read 命令说明 SYNTAX : re ...

  2. windows10安装oracle11g报错ORA-01034、ORA-01078

    ORA-01034表示数据库实例未建立,可以先用管理员账号进入一个空白实例 sqlplus / as sysdba; 如果您当前使用的账号是安装oracle的账号,则不需要账号密码就可以登陆oracl ...

  3. 获取子iframe框架的元素

    我们常常遇到使用iframe框的时候,该iframe框不能根据自己内部的内容撑起来的这种问题 必要条件:不能在跨域的情况下...本地可以放到localhost下进行测试 //父页面index.html ...

  4. 5.0docer 网络链接

    docker0 :linux的虚拟网桥 虚拟网桥特点: 1.可以设置ip地址 2.相当于拥一个隐藏的虚拟网卡     安装网桥工具 apt-get install bridge-utils brctl ...

  5. $.on方法与$.click()的区别

    1.$.on("click") 支持动态元素绑定事件,该事件是绑定到document上,只要符合条件的元素即可绑定事件,同时$.on()可以绑定多个事件 on方法 on(event ...

  6. centos7.2进入单用户模式修改密码

    1 - 在启动grub菜单,选择编辑选项启动 2 - 按键盘e键,来进入编辑界面 3 - 找到Linux 16的那一行,将ro改为rw init=/sysroot/bin/sh 4 - 现在按下 Co ...

  7. Linux内核死锁检测机制【转】

    转自:http://www.oenhan.com/kernel-deadlock-check 死锁就是多个进程(线程)因为等待别的进程已占有的自己所需要的资源而陷入阻塞的一种状态,死锁状态一旦形成,进 ...

  8. 64_f1

    FUR-0.4.6-13.fc26.x86_64.rpm 13-Feb-2017 23:32 45882 Falcon-0.9.6.8-11.fc26.i686.rpm 13-Feb-2017 23: ...

  9. STL容器之间的差异和联系

     1.vector  (连续的空间存储,可以使用[]操作符)快速的访问随机的元素,快速的在末尾插入元素,但是在序列中间的插入,删除元素要慢(涉及元素复制移动),而且如果一开始分配的空间不够的话,有一个 ...

  10. make :err Makefile.ssl is older than Makefile.org. Reconfigure the source tree (via './config' or 'perl Configure'), please.

    内核编译时出现错误 Makefile.ssl is older than Makefile.org. Reconfigure the source tree (via './config' or 'p ...