题意:求$\prod\limits_{i=1}^n\prod\limits_{j=1}^mf_{(i,j)}$,其中$f_0=0,f_1=1,f_n=f_{n-1}+f_{n-2}$

很妙的题

假设$n\leq m$,如果我们能找到一个$g$使得$f(n)=\prod\limits_{d|n}g(d)$,那么答案就是$\prod\limits_{d=1}^ng(d)^{\left\lfloor\frac nd\right\rfloor\left\lfloor\frac md\right\rfloor}$

然后直接把莫比乌斯反演搬过来居然也是可以的...我们得到$g(n)=\prod\limits_{d|n}f(d)^{\mu\left(\frac nd\right)}$

于是枚举$d$更新$d$的倍数就预处理出$g$了,时间复杂度$O\left(n\log_2n+T\sqrt n\log_2n\right)$

#include<stdio.h>
typedef long long ll;
const int mod=1000000007,T=1000000;
void swap(int&a,int&b){a^=b^=a^=b;}
int min(int a,int b){return a<b?a:b;}
int mul(int a,int b){return a*(ll)b%mod;}
int pow(int a,ll b){
	int s=1;
	while(b){
		if(b&1)s=mul(s,a);
		a=mul(a,a);
		b>>=1;
	}
	return s;
}
int pr[T+10],mu[T+10],f[T+10],rf[T+10],g[T+10],rg[T+10];
bool np[T+10];
void sieve(){
	int i,j,M=0;
	mu[1]=1;
	for(i=2;i<=T;i++){
		if(!np[i]){
			pr[++M]=i;
			mu[i]=-1;
		}
		for(j=1;j<=M&&i*pr[j]<=T;j++){
			np[i*pr[j]]=1;
			if(i%pr[j]==0)break;
			mu[i*pr[j]]=-mu[i];
		}
	}
}
int main(){
	int cas,n,m,i,j,nex,s;
	sieve();
	f[0]=0;
	f[1]=1;
	for(i=2;i<=T;i++)f[i]=(f[i-1]+f[i-2])%mod;
	for(i=1;i<=T;i++)rf[i]=pow(f[i],mod-2);
	for(i=1;i<=T;i++)g[i]=1;
	for(i=1;i<=T;i++){
		if(mu[i]){
			for(j=i;j<=T;j+=i)g[j]=mul(g[j],(mu[i]==1?f:rf)[j/i]);
		}
	}
	for(i=2;i<=T;i++)g[i]=mul(g[i],g[i-1]);
	for(i=1;i<=T;i++)rg[i]=pow(g[i],mod-2);
	rg[0]=1;
	scanf("%d",&cas);
	while(cas--){
		scanf("%d%d",&n,&m);
		if(n>m)swap(n,m);
		s=1;
		for(i=1;i<=n;i=nex+1){
			nex=min(n/(n/i),m/(m/i));
			s=mul(s,pow(mul(g[nex],rg[i-1]),(ll)(n/i)*(m/i)));
		}
		printf("%d\n",(s+mod)%mod);
	}
}

[xsy2309]数字表格的更多相关文章

  1. BZOJ 2154: Crash的数字表格 [莫比乌斯反演]

    2154: Crash的数字表格 Time Limit: 20 Sec  Memory Limit: 259 MBSubmit: 2924  Solved: 1091[Submit][Status][ ...

  2. 【BZOJ】【2154】Crash的数字表格

    莫比乌斯反演 PoPoQQQ讲义第4题 题解:http://www.cnblogs.com/jianglangcaijin/archive/2013/11/27/3446169.html 感觉两次sq ...

  3. 【莫比乌斯反演】关于Mobius反演与lcm的一些关系与问题简化(BZOJ 2154 crash的数字表格&&BZOJ 2693 jzptab)

    BZOJ 2154 crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b ...

  4. 【BZOJ 2154】Crash的数字表格 (莫比乌斯+分块)

    2154: Crash的数字表格 Description 今天的数学课上,Crash小朋友学习了最小公倍数(Least Common Multiple).对于两个正整数a和b,LCM(a, b)表示能 ...

  5. BZOJ 4816 数字表格

    首先是惯例的吐槽.SDOI题目名称是一个循环,题目内容也是一个循环,基本上过几年就把之前的题目换成另一个名字出出来,喜大普奔亦可赛艇.学长说考SDOI可以考出联赛分数,%%%. 下面放解题报告.并不喜 ...

  6. BZOJ:4816: [Sdoi2017]数字表格

    4816: [Sdoi2017]数字表格 Time Limit: 50 Sec  Memory Limit: 128 MBSubmit: 501  Solved: 222[Submit][Status ...

  7. [Sdoi2017]数字表格 [莫比乌斯反演]

    [Sdoi2017]数字表格 题意:求 \[ \prod_{i=1}^n \prod_{j=1}^m f[(i,j)] \] 考场60分 其实多推一步就推倒了... 因为是乘,我们可以放到幂上 \[ ...

  8. 【BZOJ4816】数字表格(莫比乌斯反演)

    [BZOJ4816]数字表格(莫比乌斯反演) 题面 BZOJ 求 \[\prod_{i=1}^n\prod_{j=1}^mf[gcd(i,j)]\] 题解 忽然不知道这个要怎么表示... 就写成这样吧 ...

  9. 【BZOJ2154】Crash的数字表格(莫比乌斯反演)

    [BZOJ2154]Crash的数字表格(莫比乌斯反演) 题面 BZOJ 简化题意: 给定\(n,m\) 求\[\sum_{i=1}^n\sum_{j=1}^mlcm(i,j)\] 题解 以下的一切都 ...

随机推荐

  1. Codeforces Round #483 (Div. 2) [Thanks, Botan Investments and Victor Shaburov!]

    题目链接:http://codeforces.com/contest/984 A. Game time limit per test:2 seconds memory limit per test:5 ...

  2. Part2-HttpClient官方教程-Chapter1-基础

    前言 超文本传输协议(HTTP)可能是当今Internet上使用的最重要的协议.Web服务.网络支持的设备和网络计算的增长继续扩展了HTTP协议在用户驱动的Web浏览器之外的作用,同时增加了需要HTT ...

  3. document.onclick在ios上不触发的解决方法与touchstart点击穿透处理

    document.onclick = function (e) { var e = e ? e : window.event; var tar = e.srcElement || e.target; ...

  4. Ubuntu 14.04 安装gstreamer0.10-ffmpeg

    sudo apt-add-repository ppa:mc3man/trusty-media sudo apt-get update sudo apt-get install -y gstreame ...

  5. 【bzoj4562】HAOI2016食物链

    记忆化搜索水过去了…… QwQ #include<bits/stdc++.h> #define N 400010 typedef long long ll; using namespace ...

  6. 关闭自动弹出照片自动弹出iTunes以及关闭手机照片流

    关闭自动弹出照片自动弹出iTunes以及关闭手机照片流 如何阻止iPhone连接Mac后自动弹出照片? 时间:2015/6/18 17:07:15来源:本站原创作者:Chenjh我要评论 很多新 iP ...

  7. Leetcode 之Regular Expression Matching(31)

    正则表达式的匹配,还是挺难的.可根据下一个字符是不是*分为两种情况处理,需要考虑多种情况. bool isMatch(const char *s, const char *p) { if (*p == ...

  8. linux命令(27):cat命令

    实例一:把 log2012.log 的文件内容加上行号后输入 log2013.log 这个文件里 cat -n log2012.log log2013.log 实例二:把 log2012.log 和 ...

  9. linux命令(15):mount/umount命令

    使用挂盘之前可以先使用fdisk -l查看硬盘分区情况. 命令格式: mount [-t vfstype] [-o options] device dir -t vfstype 指定文件系统的类型.常 ...

  10. Linux安装mysql.8.0.12

    1. linux安装mysql8.0.12,亲测可用. 以下是安装过程中出现的问题: 1 [root@localtest1 file]# systemctl start mysqld 2 Job fo ...