觉得有用的话,欢迎一起讨论相互学习~Follow Me

1.10 梯度消失和梯度爆炸

当训练神经网络,尤其是深度神经网络时,经常会出现的问题是梯度消失或者梯度爆炸,也就是说当你训练深度网络时,导数或坡度有时会变得非常大,或非常小,甚至以指数方式变小.这加大了训练的难度.

假设你正在训练一个很深的神经网络,并且将其权重命名为"W[1],W[2],W[3],W[4]......W[L]"

为了简化说明,我们选择激活函数为g(z)=z(线性激活函数),b[l]=0(即忽略偏置对神经网络的影响)

这样的话,输出\(\hat{y}=w[l]*w[l-1]*w[l-2]...w[2]*w[1]*x\)

假设每层的W的值相等都为:\(\begin{bmatrix}1.5&0\\0&1.5\\\end{bmatrix}\)

从技术上讲第一层的权值可能不同,基于此我们有式子\(\hat{y}=w[1]*\begin{bmatrix}1.5&0\\0&1.5\\\end{bmatrix}^{L-1}*x\)

对于一个深层神经网络来说层数L相当大,也就是说预测值\(\hat{y}\)实际上是以指数级增长的,它增长的比率是\(1.5^L\),因此对于一个深层神经网络来说,y的值将爆炸式增长.相反的,如果权重是0.5,有\(\hat{y}=w[1]*\begin{bmatrix}0.5&0\\0&0.5\\\end{bmatrix}^{L-1}*x\) 因此每个矩阵都小于1,假设x[1]x[2]的输入值都是1,那么激活函数值到最后会变成\(0.5^{(L-1)}\)激活函数值将会以指数级别下降.

对于深层神经网络最终激活值的直观理解是,以上述网络结构来看,如果每一层W只比1大一点,最终W会爆炸级别增长,如果只比W略微小一点,在深度神经网络中,激活函数将以指数级递减.

虽然只是论述了对于最终激活函数输出值将以指数级别增长或下降,这个原理也适用与层数L相关的导数或梯度函数也是呈指数增长或呈指数递减

直观上理解,梯度消失会导致优化函数训练步长变小,使训练周期变的很长.而梯度爆炸会因为过大的优化幅度而跨过最优解

ps: 对于该视频中关于梯度消失和梯度爆炸的原理有一些争论

请参考

1.11 神经网络中的权重初始化

对于梯度消失和梯度爆炸的问题,我们想出了一个不完整的解决方案,虽然不能彻底解决问题但却很有用,有助于我们为神经网络更谨慎的选择随机初始化参数

单个神经元权重初始化

假设神经元有四个特征输入,暂时忽略b对神经元的作用则:\(z=w_{1}x_{1}+w_{2}x_{2}+w_{3}x{3}+...+w_{n}x_{n}\)

为了防止梯度爆炸或者梯度消失,我们希望\(w_{i}\)尽可能小,最合理的方法就是设置\(W方差为\frac{1}{n}\) n表示神经元的输入特征数量

更简洁的说,如果你用的是Sigmoid函数,设置某层权重矩阵\(W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{1}{n^{[l-1]}})(该层每个神经元的特征数量分之一,即l层上拟合的单元数量)\)

如果你用的是ReLU激活函数,设置方差为\(\frac{2}{n}\)更好,更简洁的说,就是设置某层权重矩阵\(W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{2}{n^{[l-1]}})(该层每个神经元的特征数量分之一,即l层上拟合的单元数量)\)

如果你用的是Tanh激活函数,则设置某层权重矩阵为\(W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{1}{n^{[l-1]}})\)或者为\(W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{2}{n^{[l-1]}+n^{l}})\)

这些方法都被成为Xavier 初始化(Xavier initialization),实际上,NG认为所有这些公式都只是给你一个起点,它们给出初始化权重矩阵的方差的默认值,如果你想添加方差,则方差参数则是另一个你需要调整的超级参数,例如对于ReLU激活函数而言,你可以尝试给公式\(W^{[l]}=np.random.randn(shape)*np.sqrt(\frac{2}{n^{[l-1]}})\)添加一个乘数参数,但是NG认为相对于其他参数的调优,通常把它的调优优先级放得比较低.

1.12 梯度的数值逼近

主要讲利用双边误差计算公式:

\[\frac{f(\theta+\epsilon)-f(\theta-\epsilon)}{2\epsilon}\approx{g(\theta)}\]

利用这个公式简单的估计函数的微分.

补充资料

梯度检查

[DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.10_1.12/梯度消失/梯度爆炸/权重初始化的更多相关文章

  1. [DeeplearningAI笔记]改善深层神经网络_深度学习的实用层面1.9_归一化normalization

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.9 归一化Normaliation 训练神经网络,其中一个加速训练的方法就是归一化输入(normalize inputs). 假设我们有一个 ...

  2. deeplearning.ai 改善深层神经网络 week1 深度学习的实用层面 听课笔记

    1. 应用机器学习是高度依赖迭代尝试的,不要指望一蹴而就,必须不断调参数看结果,根据结果再继续调参数. 2. 数据集分成训练集(training set).验证集(validation/develop ...

  3. deeplearning.ai 改善深层神经网络 week1 深度学习的实用层面

    1. 应用机器学习是高度依赖迭代尝试的,不要指望一蹴而就,必须不断调参数看结果,根据结果再继续调参数. 2. 数据集分成训练集(training set).验证集(validation/develop ...

  4. [DeeplearningAI笔记]改善深层神经网络_优化算法2.6_2.9Momentum/RMSprop/Adam优化算法

    Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.6 动量梯度下降法(Momentum) 另一种成本函数优化算法,优化速度一般快于标准 ...

  5. [DeeplearningAI笔记]改善深层神经网络_优化算法2.1_2.2_mini-batch梯度下降法

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.1 mini-batch gradient descent mini-batch梯度下降法 我们将训练数据组合到一个大的矩阵中 \(X=\b ...

  6. [DeeplearningAI笔记]改善深层神经网络_优化算法2.3_2.5_带修正偏差的指数加权平均

    Optimization Algorithms优化算法 觉得有用的话,欢迎一起讨论相互学习~Follow Me 2.3 指数加权平均 举个例子,对于图中英国的温度数据计算移动平均值或者说是移动平均值( ...

  7. [DeeplearningAI笔记]改善深层神经网络1.4_1.8深度学习实用层面_正则化Regularization与改善过拟合

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.4 正则化(regularization) 如果你的神经网络出现了过拟合(训练集与验证集得到的结果方差较大),最先想到的方法就是正则化(re ...

  8. [DeeplearningAI笔记]改善深层神经网络1.1_1.3深度学习使用层面_偏差/方差/欠拟合/过拟合/训练集/验证集/测试集

    觉得有用的话,欢迎一起讨论相互学习~Follow Me 1.1 训练/开发/测试集 对于一个数据集而言,可以将一个数据集分为三个部分,一部分作为训练集,一部分作为简单交叉验证集(dev)有时候也成为验 ...

  9. 改善深层神经网络_优化算法_mini-batch梯度下降、指数加权平均、动量梯度下降、RMSprop、Adam优化、学习率衰减

    1.mini-batch梯度下降 在前面学习向量化时,知道了可以将训练样本横向堆叠,形成一个输入矩阵和对应的输出矩阵: 当数据量不是太大时,这样做当然会充分利用向量化的优点,一次训练中就可以将所有训练 ...

随机推荐

  1. Sass和Compass入门

    一.前言 1.Sass是什么? Sass可以简化你的Css工作流,并可以使你的Css的扩展和维护工作变的更加容易!例如,曾几时何,因为客户的需求的变更,你必须不断的通过查找和替换来更改一个像素值,或者 ...

  2. HDU 1014 Uniform Generator【GCD,水】

    Uniform Generator Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others ...

  3. angularJS 与angujs-sku实现购物车组合查询

    原网址:http://sentsin.com/web/1069.html   demo : https://codepen.io/hzxs1990225/pen/VYyOdW  修复版文件下载:htt ...

  4. [国嵌笔记][017][Makefile工程管理]

    Makefile的用途 1.make能够使整个程序的编译.链接只需一个命令就可以完成 2.make的工作主要依赖于Makefile的文件.Makefile文件描述了整个程序的编译.链接等规则,使之自动 ...

  5. [国嵌攻略][051][NandFlash原理解析]

    扮演角色 相当于嵌入式设备的硬盘 NandFlash分类 1.SCL(single level cell):单层式存储 2.MLC(multi level cell):多层式存储 3.SCL在存储格上 ...

  6. Java排序算法分析与实现:快排、冒泡排序、选择排序、插入排序、归并排序(二)

    一.概述: 上篇博客介绍了常见简单算法:冒泡排序.选择排序和插入排序.本文介绍高级排序算法:快速排序和归并排序.在开始介绍算法之前,首先介绍高级算法所需要的基础知识:划分.递归,并顺带介绍二分查找算法 ...

  7. oracle设置自动增长序列

    我们在用MS SQL Server时,可以为表的主键设置为自动加1的效果;但是在Oracle当中,我们是无法直接设置一个字段为自动加1,需要先建立一个Sequence,然后为这个表创建一个Trigge ...

  8. API接口安全性设计

    http://www.jianshu.com/p/c6518a8f4040 接口的安全性主要围绕Token.Timestamp和Sign三个机制展开设计,保证接口的数据不会被篡改和重复调用,下面具体来 ...

  9. 利用PHPExcel导出Excel并设置Excel格式以及数据源

    浏览:23969 发布日期:2013/07/24 分类:技术分享 代码有点长,读起来有点累.先来个截图 导出的Excel太宽了,所以将后面的列宽重新调整了再截的图 功能包括: 1.设置单元格格式,包括 ...

  10. ios开发 第三天

    1.复合 对象可以引用其它对象,可以利用其它对象提供的特性. 通过包含作为实例变量的对象指针实现的. 2.OC是单一继承 3.继承-重构 4.类实例化对象时,self指向了对象的首地址. 类对象isa ...