在之前的基于内容的推荐系统中,对于每一部电影,我们都掌握了可用的特征,使用这
些特征训练出了每一个用户的参数。相反地,如果我们拥有用户的参数,我们可以学习得出
电影的特征。

  但是如果我们既没有用户的参数,也没有电影的特征,这两种方法都不可行了。协同过滤算法可以同时学习这两者。

我们的优化目标便改为同时针对

吴恩达机器学习笔记58-协同过滤算法(Collaborative Filtering Algorithm)的更多相关文章

  1. 吴恩达机器学习笔记55-异常检测算法的特征选择(Choosing What Features to Use of Anomaly Detection)

    对于异常检测算法,使用特征是至关重要的,下面谈谈如何选择特征: 异常检测假设特征符合高斯分布,如果数据的分布不是高斯分布,异常检测算法也能够工作,但是最好还是将数据转换成高斯分布,例如使用对数函数:

  2. 吴恩达机器学习笔记50-主成分分析算法(PCA Algorithm)

    PCA 减少

  3. [吴恩达机器学习笔记]14降维3-4PCA算法原理

    14.降维 觉得有用的话,欢迎一起讨论相互学习~Follow Me 14.3主成分分析原理Proncipal Component Analysis Problem Formulation 主成分分析( ...

  4. 吴恩达机器学习笔记59-向量化:低秩矩阵分解与均值归一化(Vectorization: Low Rank Matrix Factorization & Mean Normalization)

    一.向量化:低秩矩阵分解 之前我们介绍了协同过滤算法,本节介绍该算法的向量化实现,以及说说有关该算法可以做的其他事情. 举例:1.当给出一件产品时,你能否找到与之相关的其它产品.2.一位用户最近看上一 ...

  5. 亚马逊 协同过滤算法 Collaborative filtering

    这节课时郭强的三维课.他讲的是MAYA和max .自己对这个也不怎么的感兴趣.而且这个课感觉属于数字媒体.自己对游戏,动画,这些东西一点都不兴趣,比如大一的时候刚开学的时候,张瑞的数字媒体的导论课.还 ...

  6. 吴恩达机器学习笔记(六) —— 支持向量机SVM

    主要内容: 一.损失函数 二.决策边界 三.Kernel 四.使用SVM (有关SVM数学解释:机器学习笔记(八)震惊!支持向量机(SVM)居然是这种机) 一.损失函数 二.决策边界 对于: 当C非常 ...

  7. 吴恩达机器学习笔记 —— 19 应用举例:照片OCR(光学字符识别)

    http://www.cnblogs.com/xing901022/p/9374258.html 本章讲述的是一个复杂的机器学习系统,通过它可以看到机器学习的系统是如何组装起来的:另外也说明了一个复杂 ...

  8. [吴恩达机器学习笔记]12支持向量机5SVM参数细节

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.5 SVM参数细节 标记点选取 标记点(landma ...

  9. [吴恩达机器学习笔记]12支持向量机3SVM大间距分类的数学解释

    12.支持向量机 觉得有用的话,欢迎一起讨论相互学习~Follow Me 参考资料 斯坦福大学 2014 机器学习教程中文笔记 by 黄海广 12.3 大间距分类背后的数学原理- Mathematic ...

随机推荐

  1. 跨域问题实践总结!下( [HTML5] postMessage+服务器端(反向代理服务器+CORS Cross-Origin Resource Sharing))

    4. [HTML5] postMessage 问题: 对于跨域问题,研究了一下html5的postMessage,写了代码测试了一下,感觉html5新功能就是好用啊.此文仅使用html5的新特性pos ...

  2. 你不知道的JavaScript--Item11 arguments对象

    1.什么是arguments arguments 是是JavaScript里的一个内置对象,它很古怪,也经常被人所忽视,但实际上是很重要的.所有主要的js函数库都利用了arguments对象.所以ag ...

  3. mongoDB的安装及基本使用

    1.mongoDB简介 1.1 NoSQL数据库 数据库:进行高效的.有规则的进行数据持久化存储的软件 NoSQL数据库:Not only sql,指代非关系型数据库 优点:高可扩展性.分布式计算.低 ...

  4. phantomjs Can not connect to the Service phantomjs错误

    尝试方法一: 打开hosts文件配置 cat /etc/hosts 添加 127.0.0.1 localhost 重新运行 尝试方法二: 1,抛开服务,直接调用phantomjs定位问题 由于我是从服 ...

  5. ranker.go

    package {             start = utils.MinInt(options.OutputOffset, len(outputDocs))             end = ...

  6. BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP

    BZOJ_3831_[Poi2014]Little Bird_单调队列优化DP Description 有一排n棵树,第i棵树的高度是Di. MHY要从第一棵树到第n棵树去找他的妹子玩. 如果MHY在 ...

  7. 从零开始学 Web 之 CSS(三)链接伪类、背景、行高、盒子模型、浮动

    大家好,这里是「 Daotin的梦呓 」从零开始学 Web 系列教程.此文首发于「 Daotin的梦呓 」公众号,欢迎大家订阅关注.在这里我会从 Web 前端零基础开始,一步步学习 Web 相关的知识 ...

  8. UML用法及状态图,活动图介绍

    统一建模语言UML(Unified Modeling Language)是非专利的第三代建模和规约语言.UML是一种开放的方法,用于说明.可视化.构建和编写一个正在开发的.面向对象的.软件密集系统的制 ...

  9. 从壹开始前后端分离[.NetCore ] 38 ║自动初始化数据库(不定期更新)

    缘起 哈喽大家好呀,我们又见面啦,这里先祝大家圣诞节快乐哟,昨天的红包不知道有没有小伙伴抢到呢.今天的这篇内容灰常简单,只是对我们的系统的数据库进行CodeFirst,然后就是数据处理,因为这几个月来 ...

  10. java游戏开发杂谈 - 创建一个窗体

    package game1; import javax.swing.JFrame; /** * java游戏开发杂谈 * ---demo1:创建一个窗体 * * @author 台哥 * @date ...