bzoj 2436: [Noi2011]Noi嘉年华
Description
NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办。每个嘉年华可能包含很多个活动,而每个活动只能在一个嘉年华中举办。
现在嘉年华活动的组织者小安一共收到了 n个活动的举办申请,其中第 i 个活动的起始时间为 Si,活动的持续时间为Ti。这些活动都可以安排到任意一个嘉年华的会场,也可以不安排。
小安通过广泛的调查发现,如果某个时刻,两个嘉年华会场同时有活动在进行(不包括活动的开始瞬间和结束瞬间),那么有的选手就会纠结于到底去哪个会场,从而变得不开心。所以,为了避免这样不开心的事情发生,小安要求不能有两个活动在两个会场同时进行(同一会场内的活动可以任意进行)。
另外,可以想象,如果某一个嘉年华会场的活动太少,那么这个嘉年华的吸引力就会不足,容易导致场面冷清。所以小安希望通过合理的安排,使得活动相对较少的嘉年华的活动数量最大。
此外,有一些活动非常有意义,小安希望能举办,他希望知道,如果第i 个活动必须举办(可以安排在两场嘉年华中的任何一个),活动相对较少的嘉年华的活动数量的最大值。
Solution
正解:DP+单调性优化
第一问非常简单,有两个嘉年华,所以要固定一个,设 \(f[i][j]\) 表示目前在 \(i\) 这个活动的右端点上,选择了\(j\)个放入第一个嘉年华,第二个嘉年华的最大活动数量
转移有两种:枚举 \(k<i\),\(k\)到\(i\)之间活动的要不给第一个嘉年华要不给第二个,所以预处理一个 \(c[i][j]\) 表示 \(i\)到\(j\)时间段内的活动数量,就可以 \(O(1)\) 转移了
第二问可以直接用第一问的DP数组,同理再求一个后缀的 \(f\) 数组,设为 \(g\).
那么如果是固定时间在 \(i,j\) 之间的活动的话,那么就是从 \(f[i-1][a]+g[j+1][b]+c[i][j]\) 中决策了,枚举\(a,b\),讨论\(c[i][j]\)分给第一个嘉年华,分给第二个嘉年华即可.
这样做的话是 \(O(n^5)\),所以只需要离线询问,设 \(dp[i][j]\) 表示上面说的:固定时间在 \(i,j\) 之间的活动,两个嘉年华中的最小值的最大值为多少
回答询问就可以 O\((n^2)\) 了.
注意:预处理 \(dp\) 数组是 \(O(n^4)\),但是限制上界的话,暴力是可以过的.
正解是 \(O(n^3)\) 预处理的,利用一个单调性:
假设枚举\(a\)为左边分给第一个嘉年华的活动数量,\(b\)为右边分给第一个嘉年华的
那么 \(a\)增大,\(b\)只能减小,所以可以单调指针扫描 \(b\),复杂度就降下来了.
#include <algorithm>
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#define RG register
#define il inline
#define iter iterator
#define Max(a,b) ((a)>(b)?(a):(b))
#define Min(a,b) ((a)<(b)?(a):(b))
using namespace std;
typedef long long ll;
const int N=405;
int n,B[N],num=0,c[N][N],f[N][N],g[N][N],dp[N][N],m;
struct sub{int l,r;}e[N];
void work()
{
scanf("%d",&n);m=n;
for(int i=1;i<=n;i++){
scanf("%d%d",&e[i].l,&e[i].r);
e[i].r=e[i].l+e[i].r-1;
B[++num]=e[i].l;B[++num]=e[i].r;
}
sort(B+1,B+num+1);
num=unique(B+1,B+num+1)-B-1;
for(int i=1;i<=m;i++){
e[i].l=lower_bound(B+1,B+num+1,e[i].l)-B;
e[i].r=lower_bound(B+1,B+num+1,e[i].r)-B;
for(int j=e[i].l;j>=1;j--)
for(int k=e[i].r;k<=num;k++)c[j][k]++;
}
memset(f,-127/3,sizeof(f));
memset(g,-127/3,sizeof(g));
n=num;
f[0][0]=0;
for(int i=1;i<=n;i++)
for(int j=0;j<=c[1][i];j++){
f[i][j]=f[i-1][j];
for(int k=0;k<i;k++){
f[i][j]=Max(f[i][j],f[k][j]+c[k+1][i]);
if(j>=c[k+1][i])f[i][j]=Max(f[i][j],f[k][j-c[k+1][i]]);
}
}
g[n+1][0]=0;
for(int i=n;i>=1;i--)
for(int j=0;j<=c[i][n];j++){
g[i][j]=g[i+1][j];
for(int k=i+1;k<=n+1;k++){
g[i][j]=Max(g[i][j],g[k][j]+c[i][k-1]);
if(j>=c[i][k-1])g[i][j]=Max(g[i][j],g[k][j-c[i][k-1]]);
}
}
int ans=0;
for(int i=1;i<=n;i++)
for(int j=0;j<=i;j++)
ans=max(ans,min(f[i][j],j));
printf("%d\n",ans);
int v1,v2,b;
for(int i=1;i<=n;i++)
for(int j=i;j<=n;j++){
b=c[j+1][n];
for(RG int a=0;a<=c[1][i-1];a++){
for(;b>=0;b--){
v1=min(a+b,f[i-1][a]+g[j+1][b]+c[i][j]);
v1=max(v1,min(a+b+c[i][j],f[i-1][a]+g[j+1][b]));
v2=min(a+b-1,f[i-1][a]+g[j+1][b-1]+c[i][j]);
v2=max(v2,min(a+b+c[i][j]-1,f[i-1][a]+g[j+1][b-1]));
if(v1>v2)break;
}
dp[i][j]=Max(dp[i][j],v1);
}
}
for(int i=1;i<=m;i++){
ans=0;
for(int j=e[i].l;j>=1;j--)
for(int k=e[i].r;k<=n;k++)
ans=max(ans,dp[j][k]);
printf("%d\n",ans);
}
}
int main()
{
freopen("pp.in","r",stdin);
freopen("pp.out","w",stdout);
work();
return 0;
}
bzoj 2436: [Noi2011]Noi嘉年华的更多相关文章
- 【BZOJ 2436】 2436: [Noi2011]Noi嘉年华 (区间DP)
2436: [Noi2011]Noi嘉年华 Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不 ...
- 2436: [Noi2011]Noi嘉年华 - BZOJ
Description NOI2011 在吉林大学开始啦!为了迎接来自全国各地最优秀的信息学选手,吉林大学决定举办两场盛大的 NOI 嘉年华活动,分在两个不同的地点举办.每个嘉年华可能包含很多个活动, ...
- luogu P1973 [NOI2011]NOI 嘉年华 dp
LINK:NOI 嘉年华 一道质量非常高的dp题目. 考虑如何求出第一问 容易想到dp. 按照左端点排序/右端点排序状态还是很难描述. 但是我们知道在时间上肯定是一次选一段 所以就可以直接利用时间点来 ...
- NOI2011 NOI嘉年华
http://www.lydsy.com/JudgeOnline/problem.php?id=2436 首先离散化,离散化后时间范围为[1,cnt]. 求出H[i][j],表示时间范围在[i,j]的 ...
- bzoj2436: [Noi2011]Noi嘉年华
我震惊了,我好菜,我是不是该退役(苦逼) 可以先看看代码里的注释 首先我们先考虑一下第一问好了真做起来也就这个能想想了 那么离散化时间是肯定的,看一手范围猜出是二维DP,那对于两个会场,一个放自变量, ...
- 洛谷P1973 [NOI2011]Noi嘉年华(动态规划,决策单调性)
洛谷题目传送门 DP题怕是都要大大的脑洞...... 首先,时间那么大没用,直接离散化. 第一问还好.根据题意容易发现,当一堆活动的时间有大量重叠的时候,更好的办法是把它们全部安排到一边去.那么我们转 ...
- BZOJ2436 [Noi2011]Noi嘉年华 【dp】
题目链接 BZOJ2436 题解 看这\(O(n^3)\)的数据范围,可以想到区间\(dp\) 发现同一个会场的活动可以重叠,所以暴力求出\(num[l][r]\)表示离散化后\([l,r]\)的完整 ...
- 洛谷P1973 [NOI2011]Noi嘉年华(决策单调性)
传送门 鉴于FlashHu大佬讲的这么好(而且我根本不会)我就不再讲一遍了->传送 //minamoto #include<iostream> #include<cstdio& ...
- cogs 1377. [NOI2011] NOI嘉年华 (dp
题意:给你n个活动的起止时间,要你从中选一些活动在2个会场安排(不能有两个活动在两个会场同时进行),使活动较少的会场活动数最大,以及在某个活动必须选择的前提下,求该答案. 思路:由于n很小,时间很大, ...
随机推荐
- MyGod_alpha版本测试报告
买尬-Alpha版本测试报告 @(二手市场APP)[MyGod团队|团队项目|版本测试] 项目名称:武汉大学校园二手市场APP--买尬 软件版本:1.0.0 开发团队:MyGod 开发代表:程环宇 张 ...
- 使用HttpClient4.5实现HTTPS的双向认证
说明:本文主要是在平时接口对接开发中遇到的为保证传输安全的情况特要求使用https进行交互的情况下,使用httpClient4.5版本对HTTPS的双向验证的 功能的实现 首先,老生常谈,文章 ...
- Linux下高效指令
Linux管理磁盘 资本指令 查看当前磁盘使用情况:df -h fdisk -l (查看所有的硬盘) 服务器添加硬盘:在系统设置添加 分区: fdisk /dev/sdb (sdb, sdc, sde ...
- Java面试题合集(一)
接下来几篇文章准备系统整理一下有关Java的面试题,分为基础篇,javaweb篇,框架篇,数据库篇,多线程篇,并发篇,算法篇等等,陆续更新中. 其他方面如前端后端等等的面试题也在整理中,都会有的. 所 ...
- 【深度学习】深入理解Batch Normalization批标准化
这几天面试经常被问到BN层的原理,虽然回答上来了,但还是感觉答得不是很好,今天仔细研究了一下Batch Normalization的原理,以下为参考网上几篇文章总结得出. Batch Normaliz ...
- Vue2学习小记-给Vue2路由导航钩子和axios拦截器做个封装
1.写在前面 最近在学习Vue2,遇到有些页面请求数据需要用户登录权限.服务器响应不符预期的问题,但是总不能每个页面都做单独处理吧,于是想到axios提供了拦截器这个好东西,再于是就出现了本文. 2. ...
- maven入门(6)maven的生命周期
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site. 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和 ...
- IDE-Android Studio 导入Ecplise项目不改变结构
Android Studio 导入 Ecplise创建的android 项目 无导入 不修改目录结构 首先,Ecplise 原有目录结构创建的android项目一枚 Sept 1 . 打开项目 S ...
- 转:swing 中paint与paintComponent的区别(jcomponent)
http://blog.csdn.net/q597756870/article/details/17854247 查API文档,查得在类Jcomponent下的paint方法有以下解释: ...
- 无用代码清除tip
测试提了个bug过来,说是有个ajax请求报404了. 我一看,后台代码被人删了,问了同事,因为实现机制变了,是应该删,但删多了. 把service和controller都恢复后,一个接口中除了我那个 ...