题面

传送门

Sol

题目要求\(\sum_{i=1}^{n!}[gcd(i, m!)==1]\)

设\(N=n!,M=m!\),莫比乌斯反演一波

就变成了\(\sum_{d|M}\mu(d)\frac{N}{d}\)

因为\(M|N\)所以\(d|N\)

而有个定理\(\sum_{d|M}\frac{\mu(d)}{d}=\frac{\varphi(M)}{M}\)

那么就是求\(\frac{\varphi(M)}{M}*N\)

就是\(\varphi(m!)*\frac{n!}{m!}\)

而\(\varphi(m!)=\varphi(m)*(m-1)!\)

化简

\[ans=n!*\Pi_{P|m}(1-\frac{1}{P}) \ \ \ \ (P为质数) \\
=n!*\Pi_{P|m}\frac{P-1}{P}
\]

那就变成SB题了

预处理就好了

# include <bits/stdc++.h>
# define IL inline
# define RG register
# define Fill(a, b) memset(a, b, sizeof(a))
using namespace std;
typedef long long ll;
const int _(1e7 + 1); IL ll Read(){
RG char c = getchar(); RG ll x = 0, z = 1;
for(; c < '0' || c > '9'; c = getchar()) z = c == '-' ? -1 : 1;
for(; c >= '0' && c <= '9'; c = getchar()) x = (x << 1) + (x << 3) + (c ^ 48);
return x * z;
} int n, m, Zsy, prime[_], num, fac[_], inv[_], id[_];
bool isprime[_]; IL int Pow(RG ll x, RG ll y){
RG ll ret = 1;
for(; y; y >>= 1, x = x * x % Zsy) if(y & 1) ret = ret * x % Zsy;
return ret;
} IL void Sieve(){
isprime[1] = 1; fac[1] = 1;
for(RG int i = 2; i < _; ++i){
if(!isprime[i]) prime[++num] = i , inv[num] = Pow(i, Zsy - 2);
for(RG int j = 1; j <= num && i * prime[j] < _; ++j){
isprime[i * prime[j]] = 1;
if(!(i % prime[j])) break;
}
fac[i] = 1LL * fac[i - 1] * i % Zsy;
}
for(RG int i = 1; i < num; ++i)
for(RG int j = prime[i]; j < prime[i + 1]; ++j) id[j] = i;
inv[0] = prime[0] = 1;
for(RG int i = 1; i <= num; ++i){
prime[i] = 1LL * (prime[i] - 1) * prime[i - 1] % Zsy;
inv[i] = 1LL * inv[i] * inv[i - 1] % Zsy;
}
} IL int Calc(){ return 1LL * fac[n] * prime[id[m]] % Zsy * inv[id[m]] % Zsy; } int main(RG int argc, RG char* argv[]){
RG int T = Read(); Zsy = Read();
Sieve();
while(T--){
n = Read(); m = Read();
printf("%d\n", Calc());
}
return 0;
}

[SDOI2008]沙拉公主的困惑的更多相关文章

  1. Bzoj 2186: [Sdoi2008]沙拉公主的困惑 乘法逆元,线性筛,欧拉函数,数论

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 2560  Solved: 857[Submit][St ...

  2. 数学(逆元):BZOJ 2186: [Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  3. 洛咕 P2155 [SDOI2008]沙拉公主的困惑

    洛咕 P2155 [SDOI2008]沙拉公主的困惑 有个结论,就是如果\(gcd(a,b)=1\),那么\(gcd(a+kb,b)=1\).证明比较显然. 所以这个题目要问的\(n!\)就可以分成\ ...

  4. BZOJ2186: [Sdoi2008]沙拉公主的困惑(求[1,N!]与M!互素的个数)(线性筛)

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 6103  Solved: 2060[Submit][S ...

  5. BZOJ2186 [Sdoi2008]沙拉公主的困惑 【数论,欧拉函数,线性筛,乘法逆元】

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MB Submit: 5003  Solved: 1725 [Submit] ...

  6. 【BZOJ 2186】 2186: [Sdoi2008]沙拉公主的困惑 (欧拉筛,线性求逆元)

    2186: [Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M!互质的钞 ...

  7. 【bzoj2186】[Sdoi2008]沙拉公主的困惑

    2186: [Sdoi2008]沙拉公主的困惑 Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 3303  Solved: 1129[Submit][S ...

  8. 【BZOJ2186】[Sdoi2008]沙拉公主的困惑 线性筛素数

    [BZOJ2186][Sdoi2008]沙拉公主的困惑 Description 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为1到N的阶乘,但是,政府只发行编号与M! ...

  9. 【bzoj2186】: [Sdoi2008]沙拉公主的困惑 数论-欧拉函数

    [bzoj2186]: [Sdoi2008]沙拉公主的困惑 考虑当 gcd(a,b)=1 则 gcd(nb+a,b)=1 所以[1,N!]与M!互质的个数就是 筛出[1,M]所有的素数p[i] 以及逆 ...

  10. 洛谷 P2155 [SDOI2008]沙拉公主的困惑 解题报告

    P2155 [SDOI2008]沙拉公主的困惑 题目描述 大富翁国因为通货膨胀,以及假钞泛滥,政府决定推出一项新的政策:现有钞票编号范围为\(1\)到\(N\)的阶乘,但是,政府只发行编号与\(M!\ ...

随机推荐

  1. 携程Apollo(阿波罗)配置中心在.NET Core项目快速集成

    .NET Core的支持文档大体上可以参考文档.Net客户端使用指南:https://github.com/ctripcorp/apollo/wiki/.Net%E5%AE%A2%E6%88%B7%E ...

  2. JVM自动内存管理-Java内存区域与内存溢出异常

    摘要: JVM内存的划分,导致内存溢出异常的可能区域. 1. JVM运行时内存区域 JVM在执行Java程序的过程中会把它所管理的内存划分为以下几个区域: 1.1 程序计数器 程序计数器是一块较小的内 ...

  3. php常见面试题

    1.如何取得来访者的IP地址? $_SERVER['RRMOTE_ADDR']; $_SERVER['CLIENT_IP']; $_SERVER['HTTP_X_FORWARED_FOR']; 2.$ ...

  4. Spring Boot : Whitelabel Error Page解决方案

    楼主最近爱上了一个新框架--Spring Boot, 搭建快还不用写一堆xml,最重要的是自带Tomcat 真是好 pom.xml <?xml version="1.0" e ...

  5. c中有序表的简单定义

    #include <iostream> using namespace std; #define MaxSize 50 typedef int ElemType; //定义变量int的别名 ...

  6. mysql 学习心得1

    1由于不靠这玩意吃饭 估计不准备精读 顺便中文版也不用担心翻译问题 科科 大致翻了下=,= mysql的感觉怎么就是背命令.... 2DDL语句 定义数据 创建删除修改 create drop alt ...

  7. iOS.Animations.by.Tutorials.v2.0汉化(四)

    第三章 转换 在前面的两章,你学习了如何创建基于视图位置和透明度alpha的动画属性的动画.但是,如果您希望在视图上添加动画或删除动画,您将如何处理呢? 您可以使用前几章的方法来设置进出界面的动画效果 ...

  8. Python基础学习参考(四):条件与循环

    在实际的开发中,想要实现某些功能或者需求,里面必然涉及到一些逻辑,复杂的也好简单也好,那么,通过python语法如何实现呢?这就涉及到了条件与循环.很显然绝大多数的语言都有条件和循环的语法,pytho ...

  9. 1_Two Sum --LeetCode

    原题如下: 思路:将nums放到一个map<int,int>中,其中,键是nums中元素,值对应其下标.然后遍历nums,取nums中一个值nums[i],接着用target减去它,最后再 ...

  10. 判断二叉树是否二叉排序树(BST)

    算法思想:由于二叉排序树的中序遍历可以得到一个有序的序列,因此,我们可以使用中序遍历进行求解. 代码如下: #include <stack> using namespace std; ty ...