【HAOI2015】树上操作(树链剖分)
题面
Description
有一棵点数为N的树,以点1为根,且树点有边权。然后有M个操作,分为三种:
操作1:把某个节点x的点权增加a。
操作2:把某个节点x为根的子树中所有点的点权都增加a。
操作3:询问某个节点x到根的路径中所有点的点权和。
Input
第一行两个整数N,M,表示点数和操作数。
接下来一行N个整数,表示树中节点的初始权值。
接下来N-1行每行两个正整数fr,to,表示该树中存在一条边(fr,to)。
再接下来M行,每行分别表示一次操作。其中第一个数表示该操作的种类(1~3),之后接这个操作的参数(x或者x a)。
Output
对于每个询问操作,输出该询问的答案。答案之间用换行隔开。
Sample Input
5 5
1 2 3 4 5
1 2
1 4
2 3
2 5
3 3
1 2 1
3 5
2 1 2
3 3
Sample Output
6
9
13
Hint
数据范围:
对于30%的数据,N,M<=1000。
对于50%的数据,N,M<=100000且数据随机。
对于100%的数据,N,M<=100000,且所有输入数据的绝对值都不会超过10^6。
题解
依旧是很显然的树链剖分,要用longlong存答案
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<queue>
#include<vector>
#include<algorithm>
using namespace std;
#define MAX 101000
#define lson (now<<1)
#define rson ((now<<1)|1)
inline int read()
{
register int x=0,t=1;
register char ch=getchar();
while(ch!='-'&&(ch<'0'||ch>'9'))ch=getchar();
if(ch=='-'){t=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-48;ch=getchar();}
return x*t;
}
struct Line
{
int v,next;
}e[MAX*2];
struct Node
{
long long v,lazy;
}c[MAX*5];
int h[MAX],cnt=1,tim,V[MAX];
int dfn[MAX],low[MAX],f[MAX],hson[MAX],line[MAX],size[MAX],top[MAX];
int N,Q,dep[MAX];
inline void Add(int u,int v)
{
e[cnt]=(Line){v,h[u]};
h[u]=cnt++;
}
void DFS1(int u,int ff)
{
size[u]=1;f[u]=ff;hson[u]=0;
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==ff)continue;
DFS1(v,u);
if(size[v]>size[hson[u]])hson[u]=v;
size[u]+=size[v];
}
}
void DFS2(int u,int tp)
{
top[u]=tp;dfn[u]=++tim;line[tim]=u;
if(hson[u])DFS2(hson[u],tp);
for(int i=h[u];i;i=e[i].next)
{
int v=e[i].v;
if(v==f[u]||v==hson[u])continue;
DFS2(v,v);
}
low[u]=tim;
}
void Build(int now,int l,int r)
{
if(l==r){c[now].v=V[line[l]];return;}
int mid=(l+r)>>1;
Build(lson,l,mid);Build(rson,mid+1,r);
c[now].v=c[lson].v+c[rson].v;
}
void pushdown(int now,int l,int r)
{
c[now].v+=1LL*(r-l+1)*c[now].lazy;
c[lson].lazy+=c[now].lazy;
c[rson].lazy+=c[now].lazy;
c[now].lazy=0;
}
void update(int now,int l,int r,int al,int ar,int w)
{
if(l==al&&r==ar){c[now].lazy+=w;return;}
int mid=(l+r)>>1;
c[now].v+=1LL*(ar-al+1)*w;
if(ar<=mid)update(lson,l,mid,al,ar,w);
else if(al>mid)update(rson,mid+1,r,al,ar,w);
else {update(lson,l,mid,al,mid,w);update(rson,mid+1,r,mid+1,ar,w);}
}
long long Query(int now,int l,int r,int al,int ar)
{
pushdown(now,l,r);
if(l==al&&r==ar)return c[now].v;
int mid=(l+r)>>1;
if(ar<=mid)return Query(lson,l,mid,al,ar);
if(al>mid)return Query(rson,mid+1,r,al,ar);
return Query(lson,l,mid,al,mid)+Query(rson,mid+1,r,mid+1,ar);
}
long long Answer(int u)
{
int v=1,tp1=top[u],tp2=top[v];
long long ans=0;
while(tp1!=tp2)
{
if(dep[tp1]<dep[tp2])
{
swap(tp1,tp2);
swap(u,v);
}
ans+=Query(1,1,N,dfn[tp1],dfn[u]);
u=f[tp1];tp1=top[u];
}
if(dep[u]<dep[v])swap(u,v);
ans+=Query(1,1,N,dfn[v],dfn[u]);
return ans;
}
int main()
{
N=read();Q=read();
for(int i=1;i<=N;++i)V[i]=read();
for(int i=1;i<N;++i)
{
int u=read(),v=read();
Add(u,v);Add(v,u);
}
DFS1(1,0);DFS2(1,1);
Build(1,1,N);
while(Q--)
{
int kk=read();
if(kk==1)
{
int a=read(),b=read();
update(1,1,N,dfn[a],dfn[a],b);
}
if(kk==2)
{
int a=read(),b=read();
update(1,1,N,dfn[a],low[a],b);
}
if(kk==3)
{
int a=read();
printf("%lld\n",Answer(a));
}
}
return 0;
}
【HAOI2015】树上操作(树链剖分)的更多相关文章
- bzoj4034[HAOI2015]树上操作 树链剖分+线段树
4034: [HAOI2015]树上操作 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 6163 Solved: 2025[Submit][Stat ...
- bzoj 4034: [HAOI2015]树上操作 树链剖分+线段树
4034: [HAOI2015]树上操作 Time Limit: 10 Sec Memory Limit: 256 MBSubmit: 4352 Solved: 1387[Submit][Stat ...
- 【BZOJ4034】[HAOI2015]树上操作 树链剖分+线段树
[BZOJ4034][HAOI2015]树上操作 Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 ...
- BZOJ4034 [HAOI2015]树上操作 树链剖分
欢迎访问~原文出处——博客园-zhouzhendong 去博客园看该题解 题目传送门 - BZOJ4034 题意概括 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三 ...
- P3178 [HAOI2015]树上操作 树链剖分
这个题就是一道树链剖分的裸题,但是需要有一个魔性操作___编号数组需要开longlong!!!震惊!真的神奇. 题干: 题目描述 有一棵点数为 N 的树,以点 为根,且树点有边权.然后有 M 个操作, ...
- BZOJ4034[HAOI2015]树上操作——树链剖分+线段树
题目描述 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中所有点的点权都 ...
- bzoj 4034: [HAOI2015]树上操作——树链剖分
Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个 操作,分为三种: 操作 1 :把某个节点 x 的点权增加 a . 操作 2 :把某个节点 x 为根的子树中 ...
- BZOJ 4034[HAOI2015]树上操作(树链剖分)
Description 有一棵点数为 N 的树,以点 1 为根,且树点有边权.然后有 M 个操作,分为三种:操作 1 :把某个节点 x 的点权增加 a .操作 2 :把某个节点 x 为根的子树中所有点 ...
- bzoj4034 [HAOI2015]树上操作——树链剖分
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=4034 树剖裸题: 一定要注意 long long !!! update 的时候别忘了 pus ...
- [HAOI2015]树上操作-树链剖分
#include<bits/stdc++.h> using namespace std; const int maxn = 1e6+5; #define mid ((l+r)>> ...
随机推荐
- Maven编译问题
Maven构建的Project默认使用JDK1.5进行编译,要想使用JDK1.8进行编译,最好在项目的POM文件中加上以下的字段. <build> <plugins> < ...
- Asp.net中Request.Url的各个属性对应的意义介绍
Asp.net中Request.Url的各个属性对应的意义介绍 本文转载自 http://www.jb51.net/article/30254.htm 网络上关于Request.Url的说明已经很多也 ...
- ASP.NET Core的身份认证框架IdentityServer4--(1)服务配置
官网文档地址:点我点我 准备 创建一个名为IdentityServer的ASP.NET Core Web Api 项目,端口5000 创建一个名为Api的ASP.NET Core Web Api 项目 ...
- CodeForces-748C
这题就是确定一个点,然后去找能够实现最短距离的点且距离最远的点,因为题目要求点最少.在查找时,如果从最后的点开始枚举,找到的第一个满足距离最短的点一定是最远点,但是查找的复杂度是O(n),共有n次查找 ...
- EL表达式判断不能为空
前几天在做一个网站的时候遇到一个问题,要判断一个在request或者session域里面的对象是否为空,利用EL表达式,正常思维就是用 <c:if test="${* != null} ...
- 64位Kali无法顺利执行pwn1问题的解决方案
问题描述 环境:VMware Fusion + kali-linux-2018.1-amd64.iso 问题:在Terminal利用./pwn1执行pwn1会出现 bash: ./pwn1:没 ...
- webpack代码分离 ensure 看了还不懂,你打我(转)
webpack异步加载的原理 webpack ensure相信大家都听过.有人称它为异步加载,也有人说做代码切割,那这 个家伙到底是用来干嘛的?其实说白了,它就是把js模块给独立导出一个.js文件的, ...
- GetWindowRect、GetClientRect、ScreenToClient与ClientToScreen
GetWindowRect是取得窗口在屏幕坐标系下的RECT坐标(包括客户区和非客户区),这样可以得到窗口的大小和相对屏幕左上角(0,0)的位置. GetClientRect取得窗口客户区(不包括非客 ...
- dojo省份地市级联之地市封装类(二)
dojo省份地市级联之地市封装类 City.java: /** * 地市封装类 */ package com.you.model; import java.io.Serializable; /** * ...
- php学习笔记位运算
位运算 源码:用二进制表示一个数,这个码就是源码. 比如2====00000000 00000000 0000000 00000010 正数的反码 源码 补码都一样 负数的源码是符号位取反.第一个位 ...