HDU5779 Tower Defence
dp[i][j][k] 已选i个人 选到第j层 第j层有k个人
讨论相邻层 上一层选了l人 那么共有 两层之间的方案数 以及这一层自己的方案数
#include<bits/stdc++.h>
using namespace std;
typedef long long ll;
const int MOD = 1e9+7;
ll Pow[3605];
ll dp[65][65][65];
ll C[65][65];
int N,K;
void debug(){
for(int i = 1; i <= N; ++i)
for(int j = 1; j <= 1; ++j)
for(int k = 1; k <= N; ++k)
printf("dp[%d][%d][%d]=%lld ",i,j,k,dp[i][j][k]);
printf("\n");
}
ll PPow(ll x,int y){
if(x==-1) x += MOD;
ll ans = 1;
while(y){
if(y&1) ans = ans*x% MOD;
y >>= 1; x = x*x %MOD;
}
return ans;
}
int Judge(int x,int y,int z){
int tt = x-z;
if(y == 1) return tt==0;
else if(tt >= y-1) return 1;
else return 0;
}
int main(){
int T;
Pow[0]=1;
C[0][0]=1;
for(int i = 1; i < 65; ++i)
for(int j = 0; j <= i; ++j)
if(j) C[i][j] = (C[i-1][j]+C[i-1][j-1]) % MOD;
else C[i][j] = 1;
for(int i = 1; i < 3605; ++i) Pow[i] = Pow[i-1]*2%MOD;
scanf("%d",&T);
while(T--){
memset(dp,0,sizeof(dp));
scanf("%d %d",&N,&K);
N--;
for(int j = 1; j < K; ++j)
for(int i = 1; i <= N; ++i){
if(j==1) { dp[i][j][i]=C[N][i]*Pow[i*(i-1)/2] % MOD; continue; }
for(int k = 1; k <= i; ++k)
for(int l = 1; l <= i; ++l){
// printf("%lld ",dp[i][j][k]);
if(Judge(i,j,k) && Judge(i-k,j-1,l) ) dp[i][j][k] = (dp[i][j][k] + dp[i-k][j-1][l] * C[N-i+k][k] % MOD
* PPow(Pow[l]-1,k) %MOD * Pow[k*(k-1)/2] %MOD ) % MOD;
// printf("%d %d %d %d: %lld %lld %lld\n",i,j,k,l,dp[i][j][k],C[N-i+k][k],PPow(Pow[l]-1,k) ) ;
}
}
// debug(); ll sum = Pow[N*(N-1)/2];
for(int i = 1; i <= N; ++i)
for(int j = 1; j <= K; ++j)
for(int k = 1; k <= N; ++k){ // if(sum) printf("%d %d %d\n",i,j,k);
sum = (sum + dp[i][j][k]*Pow[(N-i)*(N-i-1)/2]) % MOD;
}
printf("%lld\n",sum);
}
return 0;
}
HDU5779 Tower Defence的更多相关文章
- HDU5779 Tower Defence (BestCoder Round #85 D) 计数dp
分析(官方题解): 一点感想:(这个题是看题解并不是特别会转移,当然写完之后看起来题解说得很清晰,主要是人太弱 这个题是参考faebdc神的代码写的,说句题外话,很荣幸高中和faebdc巨一个省,虽然 ...
- hdu 5779 Tower Defence
题意:考虑由$n$个结点构成的无向图,每条边的长度均为$1$,问有多少种构图方法使得结点$1$与任意其它节点之间的最短距离均不等于$k$(无法到达时距离等于无穷大),输出答案对$1e9+7$取模.$1 ...
- HDU5886 Tower Defence 【两遍树形dp】【最长链预处理】
题意:N个点的一棵带权树.切掉某条边的价值为切后两树直径中的最大值.求各个边切掉后的价值和(共N-1项). 解法一: 强行两遍dp,思路繁琐,维护东西较多: dis表示以i为根的子树的直径,dis2表 ...
- 动态规划(树形DP):HDU 5886 Tower Defence
aaarticlea/png;base64,iVBORw0KGgoAAAANSUhEUgAAA2MAAAERCAIAAAB5Jui9AAAgAElEQVR4nOy9a6wsS3YmFL/cEkh4LP
- HDU 5886 Tower Defence
树的直径. 比赛的时候想着先树$dp$处理子树上的最长链和次长链,然后再从上到下进行一次$dfs$统计答案,和$CCPC$网络赛那个树$dp$一样,肯定是可以写的,但会很烦.......后来写崩了. ...
- HDU 5886 Tower Defence(2016青岛网络赛 I题,树的直径 + DP)
题目链接 2016 Qingdao Online Problem I 题意 在一棵给定的树上删掉一条边,求剩下两棵树的树的直径中较长那的那个长度的期望,答案乘上$n-1$后输出. 先把原来那棵树的 ...
- P2184 贪婪大陆
P2184 贪婪大陆 题目背景 面对蚂蚁们的疯狂进攻,小FF的Tower defence宣告失败……人类被蚂蚁们逼到了Greed Island上的一个海湾.现在,小FF的后方是一望无际的大海, 前 ...
- 2016 ACM/ICPC Asia Regional Qingdao Online
吐槽: 群O的不是很舒服 不知道自己应该干嘛 怎样才能在团队中充分发挥自己价值 一点都不想写题 理想中的情况是想题丢给别人写 但明显滞后 一道题拖沓很久 中途出岔子又返回来搞 最放心的是微软微软妹可以 ...
- [luogu P2184] 贪婪大陆 [树状数组][线段树]
题目背景 面对蚂蚁们的疯狂进攻,小FF的Tower defence宣告失败……人类被蚂蚁们逼到了Greed Island上的一个海湾.现在,小FF的后方是一望无际的大海, 前方是变异了的超级蚂蚁. 小 ...
随机推荐
- java中队列Queue的使用
1.在java5中新增加了java.util.Queue接口,用以支持队列的常见操作.Queue接口与List.Set同一级别,都是继承了Collection接口.Queue使用时要尽量避免Colle ...
- 51Nod 欢乐手速场1 B 序列变换[容斥原理 莫比乌斯函数]
序列变换 alpq654321 (命题人) 基准时间限制:1 秒 空间限制:131072 KB 分值: 40 lyk有两序列a和b. lyk想知道存在多少对x,y,满足以下两个条件. 1:gcd( ...
- 在.NetCore中使用Myrmec检测文件真实格式
Myrmec 是什么? Myrmec 是一个用于检测文件格式的库,Myrmec不同于其它库或者手写检测代码,Myrmec不依赖文件扩展名(在实际使用中,你的用户很可能使用虚假的扩展名欺骗你的应用程序) ...
- C#写鞍点问题
题目: 编写程序,找一找一个二维数组中的鞍点(即该位置上的元素值在行中最大,在列上最小.有可能数组没有鞍点). 要求 * 二维数组的大小.数组元素的值在运行时输入: * 程序有友好的提示信息 usin ...
- Windows Server 2016-图形化迁移FSMO角色
上章节我们简单介绍了三种不同方式查看FSMO主机角色信息,在开篇之前我们简单回顾一下FSMO五种操作主机角色:林范围操作主机角色有两种,分别是 架构主机角色(Schema Master)和 域命名主机 ...
- C语言头文件中定义全局变量导致重复定义错误
合作方升级SDK后,程序编译出现变量重复定义的错误,通过错误提示无法找到什么位置重复定义了,但确定是引入新SDK后才出现的错误,从SDK的头文件中查找,最终发现在头文件中定义了全局变量 我们的项目在多 ...
- IDEA的优质使用博客资源
intelliJ idea 使用技巧&方法 IntelliJ IDEA 常用设置讲解 IntelliJ IDEA 详细图解最常用的配置 ,适合刚刚用的新人. IntelliJ IDEA 常见文 ...
- Docker Centos7 下建立 Docker 桥接网络
为什么要让docker桥接物理网络? docker默认提供了一个隔离的内网环境,启动时会建立一个docker0的虚拟网卡,每个容器都是连接到docker0网卡上的.而docker0的ip段为172.1 ...
- python 两个list 求交集,并集,差集
def diff(listA,listB): #求交集的两种方式 retA = [i for i in listA if i in listB] retB = list(set(listA).inte ...
- java设计模式-----2、工厂方法模式
再看工厂方法模式之前先看看简单工厂模式 工厂方法模式(FACTORY METHOD)同样属于一种常用的对象创建型设计模式,又称为多态工厂模式,此模式的核心精神是封装类中不变的部分,提取其中个性化善变的 ...