【SPOJ】Substrings(后缀自动机)

题面

Vjudge

题意:给定一个长度为\(len\)的串,求出长度为1~len的子串中,出现最多的出现了多少次

题解

出现次数很好处理,就是\(right/endpos\)集合的大小

那么,直接构建\(SAM\)

求出每个位置的\(right\)集合大小

直接更新每个节点的\(longest\)就行了

最后短的可以由长的更新过来就好

#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<cstring>
#include<cmath>
#include<algorithm>
#include<set>
#include<map>
#include<vector>
#include<queue>
using namespace std;
#define ll long long
#define RG register
#define MAX 2001000
inline int read()
{
RG int x=0,t=1;RG char ch=getchar();
while((ch<'0'||ch>'9')&&ch!='-')ch=getchar();
if(ch=='-')t=-1,ch=getchar();
while(ch<='9'&&ch>='0')x=x*10+ch-48,ch=getchar();
return x*t;
}
char ch[MAX];
struct Node
{
int son[26];
int ff,len;
}t[MAX<<1];
int size[MAX];
int tot=1,last=1,c[MAX],a[MAX],ans[MAX];
void extend(int c)
{
int p=last,np=++tot;last=np;
t[np].len=t[p].len+1;
while(p&&!t[p].son[c])t[p].son[c]=np,p=t[p].ff;
if(!p)t[np].ff=1;
else
{
int q=t[p].son[c];
if(t[q].len==t[p].len+1)t[np].ff=q;
else
{
int nq=++tot;
t[nq]=t[q];
t[nq].len=t[p].len+1;
t[q].ff=t[np].ff=nq;
while(p&&t[p].son[c]==q)t[p].son[c]=nq,p=t[p].ff;
}
}
size[np]=1;
}
int main()
{
scanf("%s",ch+1);
int l=strlen(ch+1);
for(int i=1;i<=l;++i)extend(ch[i]-97);
for(int i=1;i<=tot;++i)c[t[i].len]++;
for(int i=1;i<=tot;++i)c[i]+=c[i-1];
for(int i=1;i<=tot;++i)a[c[t[i].len]--]=i;
for(int i=tot;i;--i)
{
int u=a[i];
size[t[u].ff]+=size[u];
ans[t[u].len]=max(ans[t[u].len],size[u]);
}
for(int i=l-1;i;--i)ans[i]=max(ans[i],ans[i+1]);
for(int i=1;i<=l;++i)printf("%d\n",ans[i]);
return 0;
}

【SPOJ】Substrings(后缀自动机)的更多相关文章

  1. ●SPOJ 8222 NSUBSTR–Substrings(后缀自动机)

    题链: http://www.spoj.com/problems/NSUBSTR/ 题解: 后缀自动机的水好深啊!懂不了相关证明,带着结论把这个题做了.看来这滩深水要以后再来了. 本题要用到一个叫 R ...

  2. SPOJ NSUBSTR Substrings 后缀自动机

    人生第一道后缀自动机,总是值得纪念的嘛.. 后缀自动机学了很久很久,先是看CJL的论文,看懂了很多概念,关于right集,关于pre,关于自动机的术语,关于为什么它是线性的结点,线性的连边.许多铺垫的 ...

  3. SPOJ NSUBSTR Substrings ——后缀自动机

    建后缀自动机 然后统计次数,只需要算出right集合的大小即可, 然后更新f[l[i]]和rit[i]取个max 然后根据rit集合短的一定包含长的的性质,从后往前更新一遍即可 #include &l ...

  4. 【CF316G3】Good Substrings 后缀自动机

    [CF316G3]Good Substrings 题意:给出n个限制(p,l,r),我们称一个字符串满足一个限制当且仅当这个字符串在p中的出现次数在[l,r]之间.现在想问你S的所有本质不同的子串中, ...

  5. SPOJ NSUBSTR (后缀自动机)

    SPOJ NSUBSTR Problem : 给一个长度为n的字符串,要求分别输出长度为1~n的子串的最多出现次数. Solution :首先对字符串建立后缀自动机,在根据fail指针建立出后缀树,对 ...

  6. SPOJ LCS 后缀自动机

    用后缀自动机求两个长串的最长公共子串,效果拔群.多样例的时候memset要去掉. 解题思路就是跟CLJ的一模一样啦. #pragma warning(disable:4996) #include< ...

  7. SPOJ8222 NSUBSTR - Substrings(后缀自动机)

    You are given a string S which consists of 250000 lowercase latin letters at most. We define F(x) as ...

  8. SPOJ - LCS 后缀自动机入门

    LCS - Longest Common Substring A string is finite sequence of characters over a non-empty finite set ...

  9. SPOJ LCS 后缀自动机找最大公共子串

    这里用第一个字符串构建完成后缀自动机以后 不断用第二个字符串从左往右沿着后缀自动机往前走,如能找到,那么当前匹配配数加1 如果找不到,那么就不断沿着后缀树不断往前找到所能匹配到当前字符的最大长度,然后 ...

  10. SPOJ 7258 (后缀自动机)

    转载:http://hzwer.com/4492.html 给一个长度不超过90000的串S,每次询问它的所有不同子串中,字典序第K小的,询问不超过500个. 搞出后缀自动机 dp处理出每个点往下走能 ...

随机推荐

  1. Orleans入门例子

    Orleans入门例子 这是Orleans系列文章中的一篇.首篇文章在此  一.铺垫. 虽然是个入门例子,还是需要一些铺垫. Orleans的最小完全体,应该分为2个部分.一个是Orleans客户端, ...

  2. Docker MySQL备份

    建立备份的MySQL容器 docker run --name mysql-back -e MYSQL_ROOT_PASSWORD=root -v /srv/mysql/backup:/mysql/ba ...

  3. MYSQL EXPLAIN执行计划命令详解(支持更新中)

    本文来自我的github pages博客http://galengao.github.io/ 即www.gaohuirong.cn 摘要: 本篇是根据官网中的每个一点来翻译.举例.验证的:英语不好,所 ...

  4. 几种优化ajax的执行速度的方法

    1.尽量使用局部的变量,而不使用全局变量: 2.优化for循环 3.尽量少用eval,每次使用eval都需要消耗大量的时间: 4.将DOM节点放在文档上. 5.尽量减少点好(.)操作符号的使用

  5. linux下安装git提示”无法打开锁文件 /var/lib/dpkg/lock - open (13: 权限不够)“

    如图所示,输入命令:apt-get install git后提示权限不够 解决方法,在命令前加 sudo即可 sudo apt-get install git sudo是linux系统管理指令,是允许 ...

  6. 一步一步带你实现virtual dom(一)

    一步一步带你实现virtual dom(一) 一步一步带你实现virtual dom(二)--Props和事件 要写你自己的虚拟DOM,有两件事你必须知道.你甚至都不用翻看React的源代码,或者其他 ...

  7. mysql打不开表问题解决方案

    做开发时候某一表怎么也打不开,数据也不多,网上查了按下面这篇文章完美解决,但是要记得用root登录mysql: 记一次MySQL中Waiting for table metadata lock的解决方 ...

  8. 胖虎都看得懂的CSS入门

    CSS入门 CSS是什么 摘自维基百科 层叠样式表(英语:Cascading Style Sheets,简写CSS),又称串样式列表.级联样式表.串接样式表.层叠样式表.階層式樣式表,一种用来为结构化 ...

  9. SRE之道:创造软件系统来维护系统运行

    引言:本文作者Ben Treynor Sloss,Google 运维团队的高级副总裁,SRE 名称的发明者,在这里提供了他对SRE 的定义.  本文选自<SRE:Google运维解密>. ...

  10. win8.1中安装rabbitmq

    项目测试的时候,用的是项目组linux测试机上的rabbitmq,为了方便自己随时使用,便在自己的电脑win8.1上也安装了一套,安装过程如下: 一.准备erlang和rabbitmq的安装程序:   ...