博客:blog.shinelee.me | 博客园 | CSDN

写在前面

Group Convolution分组卷积,最早见于AlexNet——2012年Imagenet的冠军方法,Group Convolution被用来切分网络,使其在2个GPU上并行运行,AlexNet网络结构如下:

Convolution VS Group Convolution

在介绍Group Convolution前,先回顾下常规卷积是怎么做的,具体可以参见博文《卷积神经网络之卷积计算、作用与思想》。如果输入feature map尺寸为\(C*H*W\),卷积核有\(N\)个,输出feature map与卷积核的数量相同也是\(N\),每个卷积核的尺寸为\(C*K*K\),\(N\)个卷积核的总参数量为\(N*C*K*K\),输入map与输出map的连接方式如下图左所示,图片来自链接

Group Convolution顾名思义,则是对输入feature map进行分组,然后每组分别卷积。假设输入feature map的尺寸仍为\(C*H*W\),输出feature map的数量为\(N\)个,如果设定要分成\(G\)个groups,则每组的输入feature map数量为\(\frac{C}{G}\),每组的输出feature map数量为\(\frac{N}{G}\),每个卷积核的尺寸为\(\frac{C}{G} * K * K\),卷积核的总数仍为\(N\)个,每组的卷积核数量为\(\frac{N}{G}\),卷积核只与其同组的输入map进行卷积,卷积核的总参数量为\(N * \frac{C}{G} *K*K\),可见,总参数量减少为原来的 \(\frac{1}{G}\),其连接方式如上图右所示,group1输出map数为2,有2个卷积核,每个卷积核的channel数为4,与group1的输入map的channel数相同,卷积核只与同组的输入map卷积,而不与其他组的输入map卷积。

Group Convolution的用途

  1. 减少参数量,分成\(G\)组,则该层的参数量减少为原来的\(\frac{1}{G}\)
  2. Group Convolution可以看成是structured sparse,每个卷积核的尺寸由\(C*K*K\)变为\(\frac{C}{G}*K*K\),可以将其余\((C- \frac{C}{G})*K*K\)的参数视为0,有时甚至可以在减少参数量的同时获得更好的效果(相当于正则)。
  3. 当分组数量等于输入map数量,输出map数量也等于输入map数量,即\(G=N=C\)、\(N\)个卷积核每个尺寸为\(1*K*K\)时,Group Convolution就成了Depthwise Convolution,参见MobileNetXception等,参数量进一步缩减,如下图所示
  4. 更进一步,如果分组数\(G=N=C\),同时卷积核的尺寸与输入map的尺寸相同,即\(K=H=W\),则输出map为\(C*1*1\)即长度为\(C\)的向量,此时称之为Global Depthwise Convolution(GDC),见MobileFaceNet,可以看成是全局加权池化,与 Global Average Pooling(GAP) 的不同之处在于,GDC 给每个位置赋予了可学习的权重(对于已对齐的图像这很有效,比如人脸,中心位置和边界位置的权重自然应该不同),而GAP每个位置的权重相同,全局取个平均,如下图所示:

以上。

参考

Group Convolution分组卷积,以及Depthwise Convolution和Global Depthwise Convolution的更多相关文章

  1. CondenseNet:可学习分组卷积,原作对DenseNet的轻量化改造 | CVPR 2018

    CondenseNet特点在于可学习分组卷积的提出,结合训练过程进行剪枝,不仅能准确地剪枝,还能继续训练,使网络权重更平滑,是个很不错的工作   来源:晓飞的算法工程笔记 公众号 论文:Neural ...

  2. ufldl学习笔记和编程作业:Feature Extraction Using Convolution,Pooling(卷积和汇集特征提取)

    ufldl学习笔记与编程作业:Feature Extraction Using Convolution,Pooling(卷积和池化抽取特征) ufldl出了新教程,感觉比之前的好,从基础讲起.系统清晰 ...

  3. 分组卷积+squeezenet+mobilenet+shufflenet的参数及运算量计算

    来一发普通的二维卷积 1.输入feature map的格式为:m * m * h1 2.卷积核为 k * k 3.输出feature map的格式为: n * n * h2 参数量:k * k * h ...

  4. python实现简易数据库之三——join多表连接和group by分组

    上一篇里面我们实现了单表查询和top N查询,这一篇我们来讲述如何实现多表连接和group by分组. 一.多表连接 多表连接的时间是数据库一个非常耗时的操作,因为连接的时间复杂度是M*N(M,N是要 ...

  5. join多表连接和group by分组

    join多表连接和group by分组 上一篇里面我们实现了单表查询和top N查询,这一篇我们来讲述如何实现多表连接和group by分组. 一.多表连接 多表连接的时间是数据库一个非常耗时的操作, ...

  6. Group by 分组查询 实战

    实战经历,由于本人在共享单车上班,我们的单车管理模块,可以根据单车号查询单车,但是单车号没有设置unique(独一无二约束),说以这就增加了单车号可能重复的风险,但是一般情况下,单车号是不会重复的,因 ...

  7. 【mybatis】【mysql】mybatis查询mysql,group by分组查询报错:Expression #1 of SELECT list is not in GROUP BY clause and contains nonaggregated column

    mybatis查询mysql,group by分组查询报错:Expression #1 of SELECT list is not in GROUP BY clause and contains no ...

  8. group by 分组

    group by 分组:一般情况下group需与统计函数(聚合函数)一起使用才有意义 mysql中的五种统计函数: ()max:求最大值 select max(goods_price) from go ...

  9. mysql使用GROUP BY分组实现取前N条记录的方法

    MySQL中GROUP BY分组取前N条记录实现 mysql分组,取记录 GROUP BY之后如何取每组的前两位下面我来讲述mysql中GROUP BY分组取前N条记录实现方法. 这是测试表(也不知道 ...

随机推荐

  1. 关于Spring的HibernateTemplate的findByExample方法使用时的一点注意。

    此前我们已经介绍了HibernateTemplate的使用配置方法,但是对其使用没有仔细说明.因为最近比较忙,我先不去介绍,而是重点说明一下容易引起问题的findByExample方法. 我尝试反编译 ...

  2. python之文件操作(基础)

    文件操作作为python基础中的重点,必须要掌握. 1.默认我们在本地电脑E盘新建wp.txt文件进行测试,文件内容如下设置. 2.进行代码编写: f=open("E://wp.txt&qu ...

  3. 使用webpack打包后的vue项目如何运行(express)

    我们知道使用webpack打包vue项目后会生成一个dist文件夹,dist文件夹下有html文件和其他css.js以及图片等,那么打包后的文件该如何正确运行呢? 倘若直接打开html文件,会报如下错 ...

  4. vue项目 构建 打包 发布 三部曲

    一.vue项目的创建 1.首先第一肯定是要有Node.js及npm这个不多说了2.安装脚手架 此时可以直接浏览-但是现在肯定有很多小白想将他发布到gitHub上并可以浏览,使用vue全家桶制作自己的博 ...

  5. 设计模式的征途—17.模板方法(Template Method)模式

    在现实生活中,很多事情都需要经过几个步骤才能完成,例如请客吃饭,无论吃什么,一般都包含:点单.吃东西.买单等几个步骤,通常情况下这几个步骤的次序是:点单=>吃东西=>买单.在这3个步骤中, ...

  6. Collection、List、Set集合概括

    1.Collection是一个接口,定义了集合相关的操作方法,其有两个子接口List和Set. 2.List和Set的区别    List是有序的可重复集合,Set是无序的不可重复集合. 3.集合持有 ...

  7. bootstrap datepicker 属性设置 以及方法和事件

    DatePicker支持鼠标点选日期,同时还可以通过键盘控制选择: page up/down - 上一月.下一月 ctrl+page up/down - 上一年.下一年 ctrl+home - 当前月 ...

  8. Alfred效率神器

    下图就是Alfred的主界面我们所有的操作都在这一个界面上进行.通过热键打开主界面(本人设置的是option+command),输入一个"a"后Alfred就会为我在候选界面上显示 ...

  9. SSM-MyBatis-03:Mybatis中简单的整合日志

    ------------吾亦无他,唯手熟尔,谦卑若愚,好学若饥-------------简单的整合日志,首先提供俩种方式,log4j和logback简单的说一下logback,他由log4j的原作者编 ...

  10. CSS3实现轴心为x轴的3D数字圆环

    当做混合开发时,总有各种意想不到的酷炫效果的需求等着你.不过这个还好,先备着方便以后用. 先上效果图: 总结一下:此效果的完成基于以下几个关键点: 1.DOM结构,为每个DIV设置旋转后,一次也会影响 ...