[SDOI 2009]HH的项链
Description
Input
Output
Sample Input
1 2 3 4 3 5
3
1 2
3 5
2 6
Sample Output
2
4
HINT
对于40%的数据,N ≤ 3000,M ≤ 200000;
对于100%的数据,N ≤ 50000,M ≤ 200000。
题解
这题首先在线是没法做的,所以我们可以考虑离线算法
解法1:莫队裸题,分块就好。
#include<map>
#include<queue>
#include<stack>
#include<cmath>
#include<ctime>
#include<cstdio>
#include<string>
#include<vector>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define LL long long
#define RE register
#define IL inline
using namespace std;
const int M=;
const int N=;
const int Q=; int cnt[M+],ans;
int keep[Q+];
int n,m,a[N+],tim;
struct query
{
int l,r,id;
}q[Q+];
bool comp(const query &a,const query &b){return a.l/tim==b.l/tim ? a.r<b.r:a.l<b.l;} int main()
{
scanf("%d",&n);
tim=sqrt(n);
for (int i=;i<=n;i++) scanf("%d",&a[i]);
scanf("%d",&m);
for (int i=;i<=m;i++)
{
scanf("%d%d",&q[i].l,&q[i].r);
q[i].id=i;
}
sort(q+,q+m+,comp);
int curl=,curr=,l,r;
for (int i=;i<=m;i++)
{
l=q[i].l,r=q[i].r;
while (curl<l) {cnt[a[curl]]--;ans-=(cnt[a[curl++]]==);}
while (curl>l) {cnt[a[--curl]]++;ans+=(cnt[a[curl]]==);}
while (curr<r) {cnt[a[++curr]]++;ans+=(cnt[a[curr]]==);}
while (curr>r) {cnt[a[curr]]--;ans-=(cnt[a[curr--]]==);}
keep[q[i].id]=ans;
}
for (int i=;i<=m;i++) printf("%d\n",keep[i]);
return ;
}
莫队
解法2:排序+树状数组。
首先记录下每种颜色的下一种颜色所在的位置,将所有询问按照右端点进行排序。
左往右扫,扫过一个元素将该位置++,若有前驱,将前驱--。
扫到区间端点,答案为$sum[r]-sum[l-1]$,记录一下就好。(其中$sum$为前缀和)
前缀和用树状数组实现。
#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
using namespace std;
struct Node
{
int l,r,num;
}s[];
int a[],ans[],n,m,c[],vis[];
bool cmp(Node a,Node b)
{
return (a.r<b.r||(a.r==b.r&&a.l<b.l));
}
int getsum(int x)
{
int s=;
while (x)
{
s+=c[x];
x-=(x&(-x));
}
return s;
}
void add(int x,int d)
{
while (x<=n)
{
c[x]+=d;
x+=(x&(-x));
}
}
int main()
{int i,j;
cin>>n;
for (i=;i<=n;i++)
{
scanf("%d",&a[i]);
}
cin>>m;
for (i=;i<=m;i++)
{
scanf("%d%d",&s[i].l,&s[i].r);
s[i].num=i;
}
sort(s+,s+m+,cmp);
j=;
for (i=;i<=n+;i++)
{
while (j<=m&&i>s[j].r)
{
ans[s[j].num]=getsum(s[j].r)-getsum(s[j].l-);
j++;
}
if (i>n) break;
if (vis[a[i]])
{
add(vis[a[i]],-);
vis[a[i]]=i;
add(i,);
}
else
{
vis[a[i]]=i;
add(i,);
}
}
for (i=;i<=m;i++)
printf("%d\n",ans[i]);
}
排序+树状数组
[SDOI 2009]HH的项链的更多相关文章
- [ SDOI 2009 ] HH的项链 & [ HEOI 2012 ] 采花
\(\\\) \(Description\) 给出一个长为\(N\)的序列,\(M\)次询问区间\([L_i,R_i]\)内不同数字的个数. \(N\in [1,5\times 10^4]\),\(M ...
- BZOJ 1878 SDOI 2009 HH项链 树状数组 + 脱机处理
标题效果:一些珠子项链.珠具有不同的颜色.我们问了很多次有多少种不同的颜色有过一段范围. 思考:这个问题让我学会聪明的离线实践.按左端点排序问题.加工出来的位置每种颜色首次出现.每一种颜色的下一次出现 ...
- [SDOI 2009]HH去散步
Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又 ...
- [BZOJ 1875] [SDOI 2009] HH去散步【矩阵乘法】
题目链接:BZOJ - 1875 题目分析: 这道题如果去掉“不会立刻沿着刚刚走来的路走回”的限制,直接用邻接矩阵跑矩阵乘法就可以了.然而现在加了这个限制,建图的方式就要做一些改变.如果我们把每一条边 ...
- sdoi 2009 HH去散步 矩阵乘
如果没有题里的"不会立刻沿着刚刚走来的路走回"限制,那么直接矩乘计算k步的方案数 但加了这个限制,就不能以点来矩乘了,考虑边数<=60,如果以边建邻接矩阵呢?? 先拆边,再把 ...
- Codevs 2307[SDOI2009]HH的项链
同题: Codevs 2307 HH的项链 BZOJ 1878 HH的项链 洛谷 1972 HH的项链 2009年省队选拔赛山东 时间限制: 1 s 空间限 ...
- BZOJ 1878: [SDOI2009]HH的项链
1878: [SDOI2009]HH的项链 Time Limit: 4 Sec Memory Limit: 64 MBSubmit: 3548 Solved: 1757[Submit][Statu ...
- BZOJ-1878 HH的项链 树状数组+莫队(离线处理)
1878: [SDOI2009]HH的项链 Time Limit: 4 Sec Memory Limit: 64 MB Submit: 2701 Solved: 1355 [Submit][Statu ...
- 【BZOJ】【1878】【SDOI2009】HH的项链
树状数组/前缀和 Orz lct1999 好神的做法... 先看下暴力的做法:对于区间[l,r],我们依次扫过去,如果这个数是第一次出现,那么我们种类数+1. 我们发现:区间中相同的几个数,只有最左边 ...
随机推荐
- spring学习笔记二 注解及AOP
本节需要导入spring-aop包 注解 使用注解的目的是为了代替配置,在使用注解时,省略键时,则是为value赋值. 扫描某个包下的所有类中的注解 <?xml version="1. ...
- gitignore忽略规则
我们用git提交本地代码时,有些文件或日志是不需要提交的,这个时候可以用.gitignore来解决这个问题: 首先,我们需要创建一个.gitignore文件,用命令输入 touch .gitignor ...
- C语言第二周作业
一.PTA实验作业 题目一:7-1 计算分段函数 1.实验代码 double x,y; scanf("%lf", &x); if(x >= 0){ y=pow(x,0 ...
- 【iOS】OC-UTC日期字符串格式化
NSLog(@"%@",[NSDate date]); NSDateFormatter *dateFormatter = [[NSDateFormatter alloc] init ...
- Entity Framework Core Code First
参考地址:https://docs.microsoft.com/zh-cn/ef/core/get-started/aspnetcore/new-db
- LeetCode & Q88-Merge Sorted Array-Easy
Array Two Pointers Description: Given two sorted integer arrays nums1 and nums2, merge nums2 into nu ...
- Python内置函数(38)——zip
英文文档: zip(*iterables) Make an iterator that aggregates elements from each of the iterables. Returns ...
- python 中 reduce 函数的使用
reduce()函数也是Python内置的一个高阶函数. reduce()函数接收的参数和 map()类似,一个函数 f,一个list,但行为和 map()不同,reduce()传入的函数 f 必须接 ...
- sts 和 lombok
1.安装lombok.jar到sts.exe所在目录 如果是eclipse,需要放到eclipse.exe所在目录,同理myeclipse. 2.修改sts.ini配置使用lombok 如果是ecli ...
- Spring Security 入门(3-11)Spring Security 的使用-自定义登录验证和回调地址
配置文件 security-ns.xml <?xml version="1.0" encoding="UTF-8"?> <beans xmln ...