[洛谷P1006] 传纸条
双线程DP的常识;DP的阶段问题;多阶段决策问题
传送门:$>here<$
题意
n*m的矩阵里,从左上角走到右下角(只能往右或往下),再从右下角走回左上角(只能往左或往上)。其中不能重复经过一个点。问最长路。
数据范围:$n,m \leq 50$
Solution
问题的转化
和上一题有点类似。把往回走的那一条路径看做是从左上到右下的另一条路径。问题转化为求从左上到右下,两条不相交的路径,要求总长最长。
如何转移保证不重复走?
容易想到dp[i][j][a][b]表示第一个人走到(i,j),第二个走到(a,b)的最长路。
于是很快就想到了dp[i][j][a][b]=max{dp[i][j][a][b-1]...}这种转移方法了。这种转移方法的实质是令一个人不动,另一个人走一步。但是很遗憾,这种方法是不能保证不重复的。举一个反例,dp[2][2][1][2]这一个状态,如果从dp[2][2][1][1]转移而来,那么就有可能是(1,1)->(1,2)->(2,2)和(1,1)->(1,2)的叠加。可见(1,2)走了两次。
DP的阶段性
对于这种双线程的DP,往往要两个线程同时考虑。如果同时考虑的话,那么两人某一时刻的位置一定在同一条对角线上(仔细思考)。那么走到同一个点的意思就是两人相遇。那么只要将两人相遇的状态设为无限小,那么就自然避开了。
有了这一点性质(每一对角线作为阶段),DP是可以继续优化的。例如直接用dp[k][i][j]来表示状态。其中k表示第几条对角线,i,j是两人的横坐标。更进一步,由于多阶段DP的某一状态只取决于上一状态,还可以用滚动数组优化。那么就变成二维DP了。
透过题解看本质
双线程与阶段
从这道题里我发现双线程的情况往往同时考虑,并且以每一步决策作为一个阶段。和上一题不同,为什么上一题可以分开转移呢?是因为上一题以往前覆盖一个点作为一个阶段,两人走的步数可以是不一样的。而这道题两人的步数是一样,如果按照不一样考虑就会出现跟随的问题。
多阶段DP问题
将一个DAG分做一个多阶段的DAG往往更清晰。关键是要从题目中看出作为阶段的量。
my code
/*By DennyQi 2019*/ #include <cstdio> #include <queue> #include <cstring> #include <algorithm> using namespace std; typedef long long ll; ; ; const int INF = 0x3f3f3f3f; inline int Max(const int a, const int b){ return (a > b) ? a : b; } inline int Min(const int a, const int b){ return (a < b) ? a : b; } inline int read(){ ; ; register char c = getchar(); '); c = getchar()); , c = getchar(); ) + (x<<) + c - '; return x * w; } int n,m; ][][][],s[][]; int main(){ n = read(), m = read(); ; i <= n; ++i){ ; j <= m; ++j){ s[i][j] = read(); } } memset(dp,-0x3f,sizeof(dp)); dp[][][][] = ; ; i <= n; ++i){ ; j <= m; ++j){ ; a <= n; ++a){ ; b <= m; ++b){ if(i==a && j==b){ continue; } dp[i][j][a][b] = max(max(dp[i-][j][a-][b],dp[i-][j][a][b-]),max(dp[i][j-][a-][b],dp[i][j-][a][b-]))+s[i][j]+s[a][b]; } } } } printf(][m][n][m-]); ; }
[洛谷P1006] 传纸条的更多相关文章
- 棋盘DP三连——洛谷 P1004 方格取数 &&洛谷 P1006 传纸条 &&Codevs 2853 方格游戏
P1004 方格取数 题目描述 设有N $\times N$N×N的方格图(N $\le 9$)(N≤9),我们将其中的某些方格中填入正整数,而其他的方格中则放入数字00.如下图所示(见样例): A ...
- 洛谷 P1006 传纸条 题解
P1006 传纸条 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法 ...
- 洛谷p1006 传纸条 三维解法
原题目如下 原地址https://www.luogu.com.cn/problem/P1006 题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做 ...
- [NOIP2008] 提高组 洛谷P1006 传纸条
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- 【动态规划】洛谷P1006传纸条
题目描述: 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的 ...
- 洛谷 P1006 传纸条 多维DP
传纸条详解: 蒟蒻最近接到了练习DP的通知,于是跑来试炼场看看:发现有点难(毕竟是蒟蒻吗)便去翻了翻题解,可怎么都看不懂.为什么呢?蒟蒻发现题解里都非常详细的讲了转移方程,讲了降维优化,但这题新颖之处 ...
- Codevs 1169 == 洛谷 P1006 传纸条
---恢复内容开始--- 1169 传纸条 时间限制: 1 s 空间限制: 128000 KB 题目等级 : 钻石 Diamond 题目描述 Description 小渊和小轩是好朋友也是同班同学,他 ...
- 洛谷 P1006 传纸条
题目描述 小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个m行n列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是 ...
- 洛谷P1006 传纸条 (棋盘dp)
好气,在洛谷上交就过了,在caioj上交就只有40分 之前在51nod做过这道题了. https://blog.csdn.net/qq_34416123/article/details/8180902 ...
- 洛谷P1006 传纸条(多维DP)
小渊和小轩是好朋友也是同班同学,他们在一起总有谈不完的话题.一次素质拓展活动中,班上同学安排做成一个mm行nn列的矩阵,而小渊和小轩被安排在矩阵对角线的两端,因此,他们就无法直接交谈了.幸运的是,他们 ...
随机推荐
- [CSS] input样式定制
input样式 定制一个泥团input,想怎么捏就怎么捏 appearance: none 所有主流浏览器都不支持 appearance 属性. Firefox 支持替代的 -moz-appearan ...
- 使用JsonProperty Attribute修改返回json
使用JsonProperty Attribute修改返回 json 值的name 本例使用JsonPropertyAttribute在序列化为JSON时更改属性的名称. public class Vi ...
- win10安装tensorflow-gpu1.13.1+cuda10.0+cudnn7.3.1
一,本机配置 Win10 64bit NVIDIA GeForce GTX 960M Python3.7(Anaconda) 二,安装CUDA 亲测,TensorFlow-gpu1.13.1支持cud ...
- IntelliJ IDEA如何激活?
本文使用的IDEA的版本是:14.0.3 下载IDEA授权服务器(下载地址见最后),并解压,打开解压后的IntelliJIDEALicenseServer目录,可以看到如下的两个文件: Intelli ...
- nginx系列8:反向代理和负载均衡原理
反向代理是nginx的一个非常重要的功能. 反向代理 nginx支持四层反向代理和七层反向代理,如下图. 负载均衡 负载均衡是实现服务高性能和高可用的重要手段,而nginx是实现负载均衡的重要工具.
- 虚拟机安装CentOS7(一)
软件环境 虚拟机:VMware Workstation Linux:CentOS-7-x86_64-DVD-1708.iso镜像文件 虚拟机所在电脑系统:win7 安装步骤 安装VMware 下载Li ...
- Vue项目需求实现记录(永久更新)
1.表单校验功能: 在el-form标签中定义:rules="rules";ref="reference" 在el-form-item定义prop=" ...
- 驰骋开源的asp.net工作流程引擎java工作流 2015 正文 驰骋工作流引擎ccflow6的功能列表
关键词: 驰骋工作流引擎 ccflow的功能列表 工作流功能列表 表单引擎功能列表 我们工作流引擎ccflow6重构之后对功能做了一些调整,要想快速了解ccbpm的功能,可以以下面列表为准 ...
- 四款让你绝对上瘾的手机APP 用一次就会爱不释手
如今我们出门在外,无时无刻不都在使用手机,在外游玩吃饭.乘地铁公交.购物逛街等,只要有手机不需要现金就可以完成这些事情,手机功能我们每天都在使用着,不用多说,大家都知道手机的重要性. 下面就是分享福利 ...
- 工具资源系列之给mac装个虚拟机
mac 系统安装虚拟机目前有两种主流软件,一种是 Parallels Desktop ,另一种是 vmware. 本教程选用的是 vmware ,因为我之前 windows 上安装的虚拟机软件就是vm ...