二分图求最大独立点集

本问题在二分图中已处理过,此处用dinic写了一遍

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <queue>
#include <cstring>
using namespace std;
const int MAXN=40005,MAXM=5000005;
int s,t,head[MAXN],nume,ma[205][205],dx[8]={-1,-2,-2,-1,1,2,2,1},dy[8]={2,1,-1,-2,2,1,-1,-2},dep[MAXN],cur[MAXN],n,m,maxflow;
struct edge{
int to,nxt,cap,flow;
}e[MAXM];
void adde(int from,int to,int cap){
e[++nume].to=to;
e[nume].nxt=head[from];
e[nume].cap=cap;
head[from]=nume;
}
queue<int>q;
bool bfs(){
memset(dep,0,sizeof(dep));
q.push(s);dep[s]=1;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(!dep[v]&&e[i].flow<e[i].cap){
dep[v]=dep[u]+1;
q.push(v);
}
}
}
return dep[t];
}
int dfs(int u,int flow){
if(u==t) return flow;
int tot=0;
for(int &i=cur[u];i&&tot<flow;i=e[i].nxt){
int v=e[i].to;
if(dep[v]==dep[u]+1&&e[i].flow<e[i].cap){
if(int t=dfs(v,min(flow-tot,e[i].cap-e[i].flow))){
e[i].flow+=t;
e[((i-1)^1)+1].flow-=t;
tot+=t;
}
}
}
return tot;
}
void dinic(){
while(bfs()){
for(int i=s;i<=t;i++) cur[i]=head[i];
maxflow+=dfs(s,0x3f3f3f3f);
}
}
int main(){
cin>>n>>m;
int cnt=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
ma[i][j]=++cnt;
}
}
for(int i=1;i<=m;i++){
int u,v;
cin>>u>>v;
ma[u][v]=0;
}
s=0;t=cnt+1;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(ma[i][j]){
if((i+j)&1) adde(s,ma[i][j],1),adde(ma[i][j],s,0);
else adde(ma[i][j],t,1),adde(t,ma[i][j],0);
}
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(ma[i][j]&&((i+j)&1)){
for(int k=0;k<8;k++){
int x=i+dx[k],y=j+dy[k];
if(x>0&&x<=n&&y>0&&y<=n){
adde(ma[i][j],ma[x][y],1);
adde(ma[x][y],ma[i][j],0);
}
}
}
}
}
dinic();
cout<<cnt-maxflow-m<<endl;
return 0;
}

洛谷 [P3355] 骑士共存问题的更多相关文章

  1. 洛谷P3355 骑士共存问题

    题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置 ...

  2. 2018.08.02 洛谷P3355 骑士共存问题(最小割)

    传送门 这题让我联想到一道叫做方格取数问题的题,如果想使摆的更多,就要使不能摆的更少,因此根据骑士的限制条件建图,求出至少有多少骑士不能摆,减一减就行了. 代码: #include<bits/s ...

  3. 洛谷P3355 骑士共存问题(最小割)

    传送门 de了两个小时的bug愣是没发现错在哪里……没办法只好重打了一遍竟然1A……我有点想从这里跳下去了…… 和方格取数问题差不多,把格子按行数和列数之和的奇偶性分为黑的和白的,可以发现某种颜色一定 ...

  4. 洛谷 P3355 骑士共存问题【最小割】

    同方格取数问题:https://www.cnblogs.com/lokiii/p/8430720.html 记得把障碍点去掉,不连边也不计入sum #include<iostream> # ...

  5. 洛谷P3355 骑士共存问题 二分图_网络流

    Code: #include<cstdio> #include<cstring> #include<queue> #include<vector> #i ...

  6. 洛谷.3355.骑士共存问题(最小割ISAP)

    题目链接 一个很暴力的想法:每个点拆点,向不能同时存在的连边 但是这样边太多了,而且会有很多重复.我不会说我还写了还没过样例 我们实际就是在做一个最大匹配.考虑原图,同在黄/红格里的骑士是互不攻击的, ...

  7. P3355 骑士共存问题

    P3355 骑士共存问题 题目描述 在一个 n*n (n <= 200)个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n ...

  8. P3355 骑士共存问题 二分建图 + 当前弧优化dinic

    P3355 骑士共存问题 题意: 也是一个棋盘,规则是“马”不能相互打到. 思路: 奇偶点分开,二分图建图,这道题要注意每个点可以跑八个方向,两边都可以跑,所以边 = 20 * n * n. 然后di ...

  9. P3355 骑士共存问题 网络流

    骑士共存 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最 ...

随机推荐

  1. 你必须知道的session与cookie

    Session本质 提到Session我们能联想到的就是用户登录功能,而本身我们使用Session的基础是通过url进行访问的,也就是使用http协议进行访问的,而http协议本身是无状态的,那么问题 ...

  2. PHP网站常见安全漏洞,及相应防范措施总结

    目前,基于PHP的网站开发已经成为目前网站开发的主流,本文笔者重点从PHP网站攻击与安全防范方面进行探究,旨在减少网站漏洞,希望对大家有所帮助! 一.常见PHP网站安全漏洞 对于PHP的漏洞,目前常见 ...

  3. ADO.NET复习总结(5)--工具类SqlHelper 实现登录

    工具类SqlHelper 即:完成常用数据库操作的代码封装 一.基础知识1.每次进行操作时,不变的代码: (1)连接字符串:(2)往集合存值:(3)创建连接对象.命令对象:(4)打开连接:(5)执行命 ...

  4. RPC架构简单理解

    RPC(Remote Promote Call) 一种进程间通信方式.允许像调用本地服务一样调用远程服务. RPC框架的主要目标就是让远程服务调用更简单.透明.RPC框架负责屏蔽底层的传输方式(TCP ...

  5. 2017-07-08( bzip2 bunzip mount)

    .bz2 压缩格式  不能压缩目录 bzip2  源文件  (不保留源文件) bzip2 -k  源文件 (保留源文件) bzip2 -d  压缩文件名  (-k保留压缩文件) bunzip  压缩文 ...

  6. 浏览器http的缓存机制

    原文出处-----分享从伯乐在线看到的一篇好文章  http://web.jobbole.com/85509/ 针对浏览器的http缓存的分析也算是老生常谈了,每隔一段时间就会冒出一篇不错的文章,其原 ...

  7. OpenCv结构和内容

    OpenCv的结构和内容 OpenCv源码组成结构其中包括cv, cvauex, cxcore, highgui, ml这5个模块 CV:图像处理和视觉算法 MLL:统计分类器 HighGui:GUI ...

  8. Java进阶篇(六)——Swing程序设计(下)

    三.布局管理器 Swing中,每个组件在容器中都有一个具体的位置和大小,在容器中摆放各自组件时很难判断其具体位置和大小,这里我们就要引入布局管理器了,它提供了基本的布局功能,可以有效的处理整个窗体的布 ...

  9. junit断言总结

    我们平时编写自己的测试类,如果没有断言,那么就没写测试的必要了. JUnit框架用一组assert方法封装了最常见的测试任务.这些assert方法可以极大地简化单元测试的编写. Assert类包含了一 ...

  10. JAVA中使用log4j及slf4j进行日志输出的方法详解

    JAVA中输出日志比较常用的是log4j,这里讲下log4j的配置和使用方法,以及slf4j的使用方法.  一.下载log4j的架包,并导入项目中,如下: 二.创建log4j.properties配置 ...