二分图求最大独立点集

本问题在二分图中已处理过,此处用dinic写了一遍

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstdlib>
#include <queue>
#include <cstring>
using namespace std;
const int MAXN=40005,MAXM=5000005;
int s,t,head[MAXN],nume,ma[205][205],dx[8]={-1,-2,-2,-1,1,2,2,1},dy[8]={2,1,-1,-2,2,1,-1,-2},dep[MAXN],cur[MAXN],n,m,maxflow;
struct edge{
int to,nxt,cap,flow;
}e[MAXM];
void adde(int from,int to,int cap){
e[++nume].to=to;
e[nume].nxt=head[from];
e[nume].cap=cap;
head[from]=nume;
}
queue<int>q;
bool bfs(){
memset(dep,0,sizeof(dep));
q.push(s);dep[s]=1;
while(!q.empty()){
int u=q.front();q.pop();
for(int i=head[u];i;i=e[i].nxt){
int v=e[i].to;
if(!dep[v]&&e[i].flow<e[i].cap){
dep[v]=dep[u]+1;
q.push(v);
}
}
}
return dep[t];
}
int dfs(int u,int flow){
if(u==t) return flow;
int tot=0;
for(int &i=cur[u];i&&tot<flow;i=e[i].nxt){
int v=e[i].to;
if(dep[v]==dep[u]+1&&e[i].flow<e[i].cap){
if(int t=dfs(v,min(flow-tot,e[i].cap-e[i].flow))){
e[i].flow+=t;
e[((i-1)^1)+1].flow-=t;
tot+=t;
}
}
}
return tot;
}
void dinic(){
while(bfs()){
for(int i=s;i<=t;i++) cur[i]=head[i];
maxflow+=dfs(s,0x3f3f3f3f);
}
}
int main(){
cin>>n>>m;
int cnt=0;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
ma[i][j]=++cnt;
}
}
for(int i=1;i<=m;i++){
int u,v;
cin>>u>>v;
ma[u][v]=0;
}
s=0;t=cnt+1;
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(ma[i][j]){
if((i+j)&1) adde(s,ma[i][j],1),adde(ma[i][j],s,0);
else adde(ma[i][j],t,1),adde(t,ma[i][j],0);
}
}
}
for(int i=1;i<=n;i++){
for(int j=1;j<=n;j++){
if(ma[i][j]&&((i+j)&1)){
for(int k=0;k<8;k++){
int x=i+dx[k],y=j+dy[k];
if(x>0&&x<=n&&y>0&&y<=n){
adde(ma[i][j],ma[x][y],1);
adde(ma[x][y],ma[i][j],0);
}
}
}
}
}
dinic();
cout<<cnt-maxflow-m<<endl;
return 0;
}

洛谷 [P3355] 骑士共存问题的更多相关文章

  1. 洛谷P3355 骑士共存问题

    题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最多可以放置 ...

  2. 2018.08.02 洛谷P3355 骑士共存问题(最小割)

    传送门 这题让我联想到一道叫做方格取数问题的题,如果想使摆的更多,就要使不能摆的更少,因此根据骑士的限制条件建图,求出至少有多少骑士不能摆,减一减就行了. 代码: #include<bits/s ...

  3. 洛谷P3355 骑士共存问题(最小割)

    传送门 de了两个小时的bug愣是没发现错在哪里……没办法只好重打了一遍竟然1A……我有点想从这里跳下去了…… 和方格取数问题差不多,把格子按行数和列数之和的奇偶性分为黑的和白的,可以发现某种颜色一定 ...

  4. 洛谷 P3355 骑士共存问题【最小割】

    同方格取数问题:https://www.cnblogs.com/lokiii/p/8430720.html 记得把障碍点去掉,不连边也不计入sum #include<iostream> # ...

  5. 洛谷P3355 骑士共存问题 二分图_网络流

    Code: #include<cstdio> #include<cstring> #include<queue> #include<vector> #i ...

  6. 洛谷.3355.骑士共存问题(最小割ISAP)

    题目链接 一个很暴力的想法:每个点拆点,向不能同时存在的连边 但是这样边太多了,而且会有很多重复.我不会说我还写了还没过样例 我们实际就是在做一个最大匹配.考虑原图,同在黄/红格里的骑士是互不攻击的, ...

  7. P3355 骑士共存问题

    P3355 骑士共存问题 题目描述 在一个 n*n (n <= 200)个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n ...

  8. P3355 骑士共存问题 二分建图 + 当前弧优化dinic

    P3355 骑士共存问题 题意: 也是一个棋盘,规则是“马”不能相互打到. 思路: 奇偶点分开,二分图建图,这道题要注意每个点可以跑八个方向,两边都可以跑,所以边 = 20 * n * n. 然后di ...

  9. P3355 骑士共存问题 网络流

    骑士共存 题目描述 在一个 n*n个方格的国际象棋棋盘上,马(骑士)可以攻击的棋盘方格如图所示.棋盘上某些方格设置了障碍,骑士不得进入 对于给定的 n*n 个方格的国际象棋棋盘和障碍标志,计算棋盘上最 ...

随机推荐

  1. Java学习之封装

    Java是一种面向对象的编程语言,对于面向对象的编程语言中有一种思想叫做封装. 封装是一种很重要的思想,今天在看教学视频时,觉得视频中的例子很好的解释了封装的重要性,能够提高程序的健壮性. 视频中以人 ...

  2. return机制

    C/C++中,函数内部的一切变量(函数内部局部变量,形参 )都是在其被调用时才被分配内存单元.子函数运行结束时,所有局部变量的内存单元会被系统释放.形参和函数内部的局部变量的生命期和作用域都是在函数内 ...

  3. 浅析@Deprecated,调用方法时出现横线划掉样式

    Deprecated 这个注释是一个标记注释.所谓标记注释,就是在源程序中加入这个标记后,并不影响程序的编译,但有时编译器会显示一些警告信息. 那么Deprecated注释是什么意思呢?如果你经常使用 ...

  4. 数据结构课程设计四则运算表达式求值(C语言版)

    本系统为四则运算表达式求值系统,用于带小括号的一定范围内正负数的四则运算标准(中缀)表达式的求值.注意事项:    1.请保证输入的四则表达式的合法性.输入的中缀表达式中只能含有英文符号"+ ...

  5. Redis Cluster集群搭建与应用

    1.redis-cluster设计 Redis集群搭建的方式有多种,例如使用zookeeper,但从redis 3.0之后版本支持redis-cluster集群,redis-cluster采用无中心结 ...

  6. Arrays类详解

    数组是数据结构中最简单的一种类型.在平常的使用上也比较多见.今天就来总结一下数组在使用过程中的一些心得 1.java中包装数组的一些基本用法的抽象类  java.util.Arrays.这个类中包含操 ...

  7. Dede 删除文档同时文章中的图片的方法

    首先,在"/include"目录下建立"extend.func.php"文件. 然后,将以下内容保存在"extend.func.php"文件 ...

  8. CCF系列之相邻数对(201409-1)

    试题编号: 201409-1 时间限制: 1.0s 内存限制: 256.0MB 问题描述 给定n个不同的整数,问这些数中有多少对整数,它们的值正好相差1. 输入格式 输入的第一行包含一个整数n,表示给 ...

  9. PreparedStatement和Statement区别

    在JDBC应用中,如果你已经是稍有水平开发者,你就应该始终以PreparedStatement代替Statement.也就是说,在任何时候都不要使用Statement 一.代码的可读性和可维护性. 虽 ...

  10. 洛谷 P1231 教辅的组成

    P1231 教辅的组成 题目背景 滚粗了的HansBug在收拾旧语文书,然而他发现了什么奇妙的东西. 题目描述 蒟蒻HansBug在一本语文书里面发现了一本答案,然而他却明明记得这书应该还包含一份练习 ...