1. KL散度

KL散度又称为相对熵,信息散度,信息增益。KL散度是是两个概率分布 $P$ 和 $Q$  之间差别的非对称性的度量。 KL散度是用来 度量使用基于 $Q$ 的编码来编码来自 $P$ 的样本平均所需的额外的位元数。 典型情况下,$P$ 表示数据的真实分布,$Q$ 表示数据的理论分布,模型分布,或 $P$ 的近似分布。

定义如下:

因为对数函数是凸函数,所以KL散度的值为非负数。

有时会将KL散度称为KL距离,但它并不满足距离的性质:

  1. KL散度不是对称的,即 $D_{KL} (P||Q) \neq D_{KL} (Q||P)$;
  2. KL散度不满足三角不等式。

2. JS散度(Jensen-Shannon)

JS散度度量了两个概率分布的相似度,基于KL散度的变体,解决了KL散度非对称的问题。一般地,JS散度是对称的,其取值是 $0$ 到 $1$ 之间。定义如下:

KL散度和JS散度度量的时候有一个问题:

如果两个分配 $P, Q$ 离得很远,完全没有重叠的时候,那么KL散度值是没有意义的,而JS散度值是一个常数。这在学习算法中是比较致命的,这就意味这这一点的梯度为 $0$。梯度消失了。

3. Wasserstein距离

Wasserstein距离度量两个概率分布之间的距离,定义如下:

  $\Pi (P_1, P_2)$ 是 $P_1$ 和 $P_2$ 分布组合起来的所有可能的联合分布的集合。对于每一个可能的联合分布 $\gamma$,可以从中采样 $(x,y)∼ \gamma$ 得到一个样本 $x$ 和 $y$,并计算出这对样本的距离 $||x−y||$,所以可以计算该联合分布 $\gamma$ 下,样本对距离的期望值 $E _{(x, y) ∼ \gamma}[||x−y||]$。在所有可能的联合分布中能够对这个期望值取到的下界 $\inf_{\gamma ∼ \Pi(P_1, P_2)} E _{(x, y) ∼ \gamma}[||x−y||]$ 就是Wasserstein距离。

  直观上可以把 $E _{(x, y) ∼ \gamma}[||x−y||]$ 理解为在 $\gamma$ 这个路径规划下把土堆 $P_1$ 挪到土堆 $P_2$ 所需要的消耗。而Wasserstein距离就是在最优路径规划下的最小消耗。所以Wesserstein距离又叫Earth-Mover距离。

  Wessertein距离相比KL散度和JS散度的优势在于:即使两个分布的支撑集没有重叠或者重叠非常少,仍然能反映两个分布的远近。而JS散度在此情况下是常量,KL散度可能无意义。

转载自:KL散度、JS散度、Wasserstein距离

KL散度、JS散度、Wasserstein距离的更多相关文章

  1. 信息论相关概念:熵 交叉熵 KL散度 JS散度

    目录 机器学习基础--信息论相关概念总结以及理解 1. 信息量(熵) 2. KL散度 3. 交叉熵 4. JS散度 机器学习基础--信息论相关概念总结以及理解 摘要: 熵(entropy).KL 散度 ...

  2. KL与JS散度学习[转载]

    转自:https://www.jianshu.com/p/43318a3dc715?from=timeline&isappinstalled=0 https://blog.csdn.net/e ...

  3. KL散度与JS散度

    1.KL散度 KL散度( Kullback–Leibler divergence)是描述两个概率分布P和Q差异的一种测度.对于两个概率分布P.Q,二者越相似,KL散度越小. KL散度的性质:P表示真实 ...

  4. 【GAN与NLP】GAN的原理 —— 与VAE对比及JS散度出发

    0. introduction GAN模型最早由Ian Goodfellow et al于2014年提出,之后主要用于signal processing和natural document proces ...

  5. 【深度学习】K-L 散度,JS散度,Wasserstein距离

    度量两个分布之间的差异 (一)K-L 散度 K-L 散度在信息系统中称为相对熵,可以用来量化两种概率分布 P 和 Q 之间的差异,它是非对称性的度量.在概率学和统计学上,我们经常会使用一种更简单的.近 ...

  6. 【python深度学习】KS,KL,JS散度 衡量两组数据是否同分布

    目录 KS(不需要两组数据相同shape) JS散度(需要两组数据同shape) KS(不需要两组数据相同shape) 奇怪之处:有的地方也叫KL KS距离,相对熵,KS散度 当P(x)和Q(x)的相 ...

  7. PyTorch 实战:计算 Wasserstein 距离

    PyTorch 实战:计算 Wasserstein 距离 2019-09-23 18:42:56 This blog is copied from: https://mp.weixin.qq.com/ ...

  8. wasserstein 距离

    https://blog.csdn.net/nockinonheavensdoor/article/details/82055147 注明:直观理解而已,正儿八经的严谨证明看最下面的参考. Earth ...

  9. js获取滚动条距离浏览器顶部,底部的高度,兼容ie和firefox

    做web开发经常会碰到需要获取浏览器的滚动条与顶部和底部的距离,然后做相应的处理动作.下面作者就如何通过js来获取浏览器滚动条距离浏览器顶部和底部的高度做一下分享,这个是同时兼容ie和firefox的 ...

随机推荐

  1. C# Npoi 实现Excel与数据库相互导入

    十年河东,十年河西,莫欺少年穷! NPOI支持对 Word 和 Excel 文件的操作! 针对 Word 的操作一般用于打印技术!说白了就是利用 Word 文件作为模板,生成各种不同的打印!具体用到的 ...

  2. Demo更新列表

    Sdk 对应的demo ESF (1)ESF/ESFramework.EntranceDemo.rar (2)ESF/4.ESFramework.Demos.Ftp.rar (3)ESF/6.ESFr ...

  3. EF和Dapper之争的关键

    突然发现园子里为EF和Dapper的事闹翻了天.(学Java的同学大概就是Hibernate和MyBatis之争了) 讲到EF对Mysql的支持,我在一边偷着乐:还好我用的是NHibernate,对M ...

  4. 【Git之旅】1.Git常用命令

    1.创建初始化版本库 git init 2.将文件添加到版本库中 git add index.html (添加到暂存区) git add . 命令让Git把当前目录及目录中的文件都添加到版本库里 gi ...

  5. 中缀表达式得到后缀表达式(c++、python实现)

    将中缀表达式转换为后缀表达式的算法思想如下: 从左往右开始扫描中缀表达式 遇到数字加入到后缀表达式 遇到运算符时: 1.若为‘(’,入栈 2.若为’)‘,把栈中的运算符依次加入后缀表达式,直到出现'( ...

  6. RecyclerView和ListView比较

    题记: RecyclerView说是目前最重要的控件也不为过,ListView虽然被RecyclerView光芒掩盖,但也仍有着自己的d地位:这个问题不是很偏重原理或实践,而更多的是,针对面试中会问到 ...

  7. Java使用Aspose组件进行多文档间的转换操作

    首先,祝大家新年快乐,2019诸事顺利,很久没有更新博客,今天要给大家说的是 ”Aspose“ 组件,作为2019年第一篇博客,希望大家能够多多支持,2019年要继续加油. 什么是Aspose? As ...

  8. 用tornado实现图片标记

    背景介绍   在文章Keras入门(四)之利用CNN模型轻松破解网站验证码中,其中的验证码图片标记是采用tornado实现的网页实现的.本文将会讲述如何利用tornado来实现图片标记.   我们的示 ...

  9. linux 指令备忘

    linux 指令备忘 1.ls [选项] [目录名 | 列出相关目录下的所有目录和文件 -a 列出包括.a开头的隐藏文件的所有文件 -A 通-a,但不列出"."和"..& ...

  10. JavaScript常用代码书写规范

    javascript 代码规范 代码规范我们应该遵循古老的原则:“能做并不意味着应该做”. 全局命名空间污染 总是将代码包裹在一个立即的函数表达式里面,形成一个独立的模块. 不推荐 , y = ; c ...