Given two sparse matrices A and B, return the result of AB.

You may assume that A's column number is equal to B's row number.

Example:

A = [
[ 1, 0, 0],
[-1, 0, 3]
] B = [
[ 7, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 1 ]
] | 1 0 0 | | 7 0 0 | | 7 0 0 |
AB = | -1 0 3 | x | 0 0 0 | = | -7 0 3 |
| 0 0 1 |

这道题让我们实现稀疏矩阵相乘,稀疏矩阵的特点是矩阵中绝大多数的元素为0,而相乘的结果是还应该是稀疏矩阵,即还是大多数元素为0,那么我们使用传统的矩阵相乘的算法肯定会处理大量的0乘0的无用功,所以我们需要适当的优化算法,使其可以顺利通过OJ,我们知道一个 i x k 的矩阵A乘以一个 k x j 的矩阵B会得到一个 i x j 大小的矩阵C,那么我们来看结果矩阵中的某个元素C[i][j]是怎么来的,起始是A[i][0]*B[0][j] + A[i][1]*B[1][j] + ... + A[i][k]*B[k][j],那么为了不重复计算0乘0,我们首先遍历A数组,要确保A[i][k]不为0,才继续计算,然后我们遍历B矩阵的第k行,如果B[K][J]不为0,我们累加结果矩阵res[i][j] += A[i][k] * B[k][j]; 这样我们就能高效的算出稀疏矩阵的乘法,参见代码如下:

解法一:

class Solution {
public:
vector<vector<int>> multiply(vector<vector<int>>& A, vector<vector<int>>& B) {
vector<vector<int>> res(A.size(), vector<int>(B[].size()));
for (int i = ; i < A.size(); ++i) {
for (int k = ; k < A[].size(); ++k) {
if (A[i][k] != ) {
for (int j = ; j < B[].size(); ++j) {
if (B[k][j] != ) res[i][j] += A[i][k] * B[k][j];
}
}
}
}
return res;
}
};

再来看另一种方法,这种方法其实核心思想跟上面那种方法相同,稍有不同的是我们用一个二维矩阵矩阵来记录每一行中,各个位置中不为0的列数和其对应的值,然后我们遍历这个二维矩阵,取出每行中不为零的列数和值,然后遍历B中对应行进行累加相乘,参见代码如下:

解法二:

class Solution {
public:
vector<vector<int>> multiply(vector<vector<int>>& A, vector<vector<int>>& B) {
vector<vector<int>> res(A.size(), vector<int>(B[].size()));
vector<vector<pair<int, int>>> v(A.size(), vector<pair<int,int>>());
for (int i = ; i < A.size(); ++i) {
for (int k = ; k < A[i].size(); ++k) {
if (A[i][k] != ) v[i].push_back({k, A[i][k]});
}
}
for (int i = ; i < A.size(); ++i) {
for (int k = ; k < v[i].size(); ++k) {
int col = v[i][k].first;
int val = v[i][k].second;
for (int j = ; j < B[].size(); ++j) {
res[i][j] += val * B[col][j];
}
}
}
return res;
}
};

参考资料:

https://leetcode.com/discuss/77235/ac-soluiton-code

https://leetcode.com/discuss/71912/easiest-java-solution

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Sparse Matrix Multiplication 稀疏矩阵相乘的更多相关文章

  1. [leetcode]311. Sparse Matrix Multiplication 稀疏矩阵相乘

    Given two sparse matrices A and B, return the result of AB. You may assume that A's column number is ...

  2. [LeetCode] Sparse Matrix Multiplication

    Problem Description: Given two sparse matrices A and B, return the result of AB. You may assume that ...

  3. 稀疏矩阵乘法 · Sparse Matrix Multiplication

    [抄题]: 给定两个 稀疏矩阵 A 和 B,返回AB的结果.您可以假设A的列数等于B的行数. [暴力解法]: 时间分析: 空间分析: [思维问题]: [一句话思路]: 如果为零则不相乘,优化常数的复杂 ...

  4. HDU 4920 Matrix multiplication 矩阵相乘。稀疏矩阵

    Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  5. 311. Sparse Matrix Multiplication

    题目: Given two sparse matrices A and B, return the result of AB. You may assume that A's column numbe ...

  6. HDU 4920 Matrix multiplication(矩阵相乘)

    各种TEL,233啊.没想到是处理掉0的情况就能够过啊.一直以为会有极端数据.没想到居然是这种啊..在网上看到了一个AC的奇妙的代码,经典的矩阵乘法,仅仅只是把最内层的枚举,移到外面就过了啊...有点 ...

  7. [Swift]LeetCode311. 稀疏矩阵相乘 $ Sparse Matrix Multiplication

    Given two sparse matrices A and B, return the result of AB. You may assume that A's column number is ...

  8. LeetCode 311. Sparse Matrix Multiplication

    原题链接在这里:https://leetcode.com/problems/sparse-matrix-multiplication/description/ 题目: Given two sparse ...

  9. 【LeetCode】311. Sparse Matrix Multiplication 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力 科学计算库numpy 日期 题目地址:https ...

随机推荐

  1. GIS部分理论知识备忘随笔

    文章版权由作者李晓晖和博客园共有,若转载请于明显处标明出处:http://www.cnblogs.com/naaoveGIS/ 1.高斯克吕格投影带换算 某坐标的经度为112度,其投影的6度带和3度带 ...

  2. FFmpeg数据结构:AVPacket解析

    本文主要从以下几个方面对AVPacket做解析: AVPacket在FFmpeg中的作用 字段说明 AVPacket中的内存管理 AVPacket相关函数的说明 结合AVPacket队列说明下AVPa ...

  3. 数百个 HTML5 例子学习 HT 图形组件 – 3D建模篇

    http://www.hightopo.com/demo/pipeline/index.html <数百个 HTML5 例子学习 HT 图形组件 – WebGL 3D 篇>里提到 HT 很 ...

  4. MyCat源码分析系列之——前后端验证

    更多MyCat源码分析,请戳MyCat源码分析系列 MyCat前端验证 MyCat的前端验证指的是应用连接MyCat时进行的用户验证过程,如使用MySQL客户端时,$ mysql -uroot -pr ...

  5. .NET 版本区别,以及与 Windows 的关系

    老是记不住各 Windows 版本中的 .NET 版本号,下面汇总一下: .NET Framework各版本汇总以及之间的关系 Mailbag: What version of the .NET Fr ...

  6. 成吨提高开发效率:Intellij Shortcuts精简子集与思维模式

    在线精简cheatsheet备查表:intellij.linesh.twGithub项目:intellij-mac-frequent-keymap Intellij的快捷键多而繁杂,从官方推荐的key ...

  7. fastjson-alibaba

    fastjson使用 package com.alibaba.json.demo; import org.junit.Assert; import com.alibaba.fastjson.JSON; ...

  8. Razor 语法初级使用,不断更新此文章

    有兴趣的可以看看菜鸟教程的   http://www.runoob.com/aspnet/razor-cs-loops.html 1.ViewData展示登陆的Session信息 Controller ...

  9. Windows下快速安装Flask的一次经历

    前提: 1.已安装python版本(一般都是2.X) 2.已安装easy_install python安装,记得配置Python的环境变量,例如:我的直接在Path上加 G:\Python 验证安装P ...

  10. 如何实现一个php框架系列文章【开篇】

    1.本系列文章的目的 实现一个小而美的产品级别php框架 自己动手实现一个新框架仅用于学习交流,不打算替代市面上现有的其他主流框架. 2. 我要一个怎样的PHP框架 简单实用,安全优雅,博采众长 安装 ...