Given two sparse matrices A and B, return the result of AB.

You may assume that A's column number is equal to B's row number.

Example:

A = [
[ 1, 0, 0],
[-1, 0, 3]
] B = [
[ 7, 0, 0 ],
[ 0, 0, 0 ],
[ 0, 0, 1 ]
] | 1 0 0 | | 7 0 0 | | 7 0 0 |
AB = | -1 0 3 | x | 0 0 0 | = | -7 0 3 |
| 0 0 1 |

这道题让我们实现稀疏矩阵相乘,稀疏矩阵的特点是矩阵中绝大多数的元素为0,而相乘的结果是还应该是稀疏矩阵,即还是大多数元素为0,那么我们使用传统的矩阵相乘的算法肯定会处理大量的0乘0的无用功,所以我们需要适当的优化算法,使其可以顺利通过OJ,我们知道一个 i x k 的矩阵A乘以一个 k x j 的矩阵B会得到一个 i x j 大小的矩阵C,那么我们来看结果矩阵中的某个元素C[i][j]是怎么来的,起始是A[i][0]*B[0][j] + A[i][1]*B[1][j] + ... + A[i][k]*B[k][j],那么为了不重复计算0乘0,我们首先遍历A数组,要确保A[i][k]不为0,才继续计算,然后我们遍历B矩阵的第k行,如果B[K][J]不为0,我们累加结果矩阵res[i][j] += A[i][k] * B[k][j]; 这样我们就能高效的算出稀疏矩阵的乘法,参见代码如下:

解法一:

class Solution {
public:
vector<vector<int>> multiply(vector<vector<int>>& A, vector<vector<int>>& B) {
vector<vector<int>> res(A.size(), vector<int>(B[].size()));
for (int i = ; i < A.size(); ++i) {
for (int k = ; k < A[].size(); ++k) {
if (A[i][k] != ) {
for (int j = ; j < B[].size(); ++j) {
if (B[k][j] != ) res[i][j] += A[i][k] * B[k][j];
}
}
}
}
return res;
}
};

再来看另一种方法,这种方法其实核心思想跟上面那种方法相同,稍有不同的是我们用一个二维矩阵矩阵来记录每一行中,各个位置中不为0的列数和其对应的值,然后我们遍历这个二维矩阵,取出每行中不为零的列数和值,然后遍历B中对应行进行累加相乘,参见代码如下:

解法二:

class Solution {
public:
vector<vector<int>> multiply(vector<vector<int>>& A, vector<vector<int>>& B) {
vector<vector<int>> res(A.size(), vector<int>(B[].size()));
vector<vector<pair<int, int>>> v(A.size(), vector<pair<int,int>>());
for (int i = ; i < A.size(); ++i) {
for (int k = ; k < A[i].size(); ++k) {
if (A[i][k] != ) v[i].push_back({k, A[i][k]});
}
}
for (int i = ; i < A.size(); ++i) {
for (int k = ; k < v[i].size(); ++k) {
int col = v[i][k].first;
int val = v[i][k].second;
for (int j = ; j < B[].size(); ++j) {
res[i][j] += val * B[col][j];
}
}
}
return res;
}
};

参考资料:

https://leetcode.com/discuss/77235/ac-soluiton-code

https://leetcode.com/discuss/71912/easiest-java-solution

LeetCode All in One 题目讲解汇总(持续更新中...)

[LeetCode] Sparse Matrix Multiplication 稀疏矩阵相乘的更多相关文章

  1. [leetcode]311. Sparse Matrix Multiplication 稀疏矩阵相乘

    Given two sparse matrices A and B, return the result of AB. You may assume that A's column number is ...

  2. [LeetCode] Sparse Matrix Multiplication

    Problem Description: Given two sparse matrices A and B, return the result of AB. You may assume that ...

  3. 稀疏矩阵乘法 · Sparse Matrix Multiplication

    [抄题]: 给定两个 稀疏矩阵 A 和 B,返回AB的结果.您可以假设A的列数等于B的行数. [暴力解法]: 时间分析: 空间分析: [思维问题]: [一句话思路]: 如果为零则不相乘,优化常数的复杂 ...

  4. HDU 4920 Matrix multiplication 矩阵相乘。稀疏矩阵

    Matrix multiplication Time Limit: 4000/2000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/ ...

  5. 311. Sparse Matrix Multiplication

    题目: Given two sparse matrices A and B, return the result of AB. You may assume that A's column numbe ...

  6. HDU 4920 Matrix multiplication(矩阵相乘)

    各种TEL,233啊.没想到是处理掉0的情况就能够过啊.一直以为会有极端数据.没想到居然是这种啊..在网上看到了一个AC的奇妙的代码,经典的矩阵乘法,仅仅只是把最内层的枚举,移到外面就过了啊...有点 ...

  7. [Swift]LeetCode311. 稀疏矩阵相乘 $ Sparse Matrix Multiplication

    Given two sparse matrices A and B, return the result of AB. You may assume that A's column number is ...

  8. LeetCode 311. Sparse Matrix Multiplication

    原题链接在这里:https://leetcode.com/problems/sparse-matrix-multiplication/description/ 题目: Given two sparse ...

  9. 【LeetCode】311. Sparse Matrix Multiplication 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 暴力 科学计算库numpy 日期 题目地址:https ...

随机推荐

  1. 【十大经典数据挖掘算法】AdaBoost

    [十大经典数据挖掘算法]系列 C4.5 K-Means SVM Apriori EM PageRank AdaBoost kNN Naïve Bayes CART 1. 集成学习 集成学习(ensem ...

  2. base的应用

    ------------父类   public class Person   {       public Person(string name,int age)    {       this.Na ...

  3. PreEmptive Dotfuscator and Analytics CE

    PreEmptive Dotfuscator and Analytics CE Dotfuscator 是领先的 .NET 模糊处理程序和压缩程序,有助于防止程序遭到反向工程,同时使程序更小更高效.D ...

  4. 【转】SQL Server -- 已成功与服务器建立连接,但是在登录过程中发生错误

    SQL Server -- 已成功与服务器建立连接,但是在登录过程中发生错误 最近在VS2013上连接远程数据库时,突然连接不上,在跑MSTest下跑的时候,QTAgent32 crash.换成IIS ...

  5. 设计模式(六)原型模式(Prototype Pattern)

    一.引言 在软件系统中,当创建一个类的实例的过程很昂贵或很复杂,并且我们需要创建多个这样类的实例时,如果我们用new操作符去创建这样的类实例,这未免会增加创建类的复杂度和耗费更多的内存空间,因为这样在 ...

  6. 浅谈Slick(3)- Slick201:从fp角度了解Slick

    我在上期讨论里已经成功的创建了一个简单的Slick项目,然后又尝试使用了一些最基本的功能.Slick是一个FRM(Functional Relational Mapper),是为fp编程提供的scal ...

  7. nodejs 安装

    安装nodejs进入nodejs源码./configure --prefix=/software/installed/nodemakemake install 如果configure的时候提示:WAR ...

  8. safari cookie设置中文失败

    最近用H5进行手机端开发,由于是window操作系统,为了方便开发和调试,直接在chrome浏览器上进行测试,然后在android机上进行手机端测试,当功能基本完工后,原来在android上运行正常的 ...

  9. 移动站适配rel=alternate PC页和H5页适配标注

    鉴于移动化大潮的汹涌和H5页的炫丽普及,百度针对PC页与H5页的跳转适配方式推出了最优方案:1.在pc版网页上,添加指向对应移动版网址的特殊链接rel="alternate"标记, ...

  10. HTTP、HTTP2

      HTTP.HTTP2.0.SPDY.HTTPS 你应该知道的一些事 原文链接:http://www.alloyteam.com/2016/07/httphttp2-0spdyhttps-readi ...