sparkSQL

1、主要的数据结构

DataFreames

2、开始使用:SQLContext

创建步骤:

Val  sc:sparkContext

Val  sqlContext=new org.apache.spark.sql.SQLContext(sc)

Import sqlContext.implicits._ //隐形将RDD转化DF

3、构建DF及DF 操作

Val sc:SparkContext

Val Val  sqlContext=new org.apache.spark.sql.SQLContext(sc)

Val df = sqlContext.jsonFile(“/people.json”)

0) df.show

1) df.printSchema()

2) df.select(“name”).show

3) df.select(df(“name”),df(“age”)).show

4) df.filter(df(“age”)>21).show

5)df.groupBy(“age”).count().show

4RDDs

Spark支持两种不同的方法将现有的RDDs转化为SchemaRDD

1) 使用反射(reflection)来推断包含类型对象的RDD的格式,这种基于反射方法使得代码更简洁且运行良好,因为当你写spark应用时,你早已经知道他的格式了

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

import sqlContext.implicits._

case class Person(name: String, age: Int)

val people = sc.textFile("examples/src/main/resources/people.txt").map(_.split(",")).map(p => Person(p(0), p(1).trim.toInt)).toDF()

people.registerTempTable("people")

val teenagers = sqlContext.sql("SELECT name FROM people WHERE age >= 13 AND age <= 19")

teenagers.map(t => "Name: " + t(0)).collect().foreach(println)

2)通过一个编程接口,允许你构建一种格式,然后将类型时其应用到现在的RDD,虽然这种方法比较繁琐,但可以让你不知道RDD的列和他们的类型时构建SchemaRDDs

val sqlContext = new org.apache.spark.sql.SQLContext(sc)

// Create an RDD

val people = sc.textFile("examples/src/main/resources/people.txt")

// The schema is encoded in a string

val schemaString = "name age"

// Import Row.

import org.apache.spark.sql.Row;

// Import Spark SQL data types

import org.apache.spark.sql.types.{StructType,StructField,StringType};

// Generate the schema based on the string of schema

val schema = StructType(schemaString.split(" ").map(fieldName => StructField(fieldName, StringType, true)))

// Convert records of the RDD (people) to Rows.

val rowRDD = people.map(_.split(",")).map(p => Row(p(0), p(1).trim))

// Apply the schema to the RDD.

val peopleDataFrame = sqlContext.createDataFrame(rowRDD, schema)

// Register the DataFrames as a table.

peopleDataFrame.registerTempTable("people")

// SQL statements can be run by using the sql methods provided by sqlContext.

val results = sqlContext.sql("SELECT name FROM people")

// The results of SQL queries are DataFrames and support all the normal RDD operations.

// The columns of a row in the result can be accessed by ordinal.

results.map(t => "Name: " + t(0)).collect().foreach(println)

5. 数据源

1)、加载和保存(load和save)

Val df=sqlCotext.load(“people.parquet”)

df.select(“name”,”age”).save(“namesAndAges.parquet”)

2) 格式选择

1. 文件类型

Val df=sqlCotext.load(“people.parquet”)

df.select(“name”,”age”).save(“namesAndAges.parquet”,”parquet”)

2. 保存方式

SaveMode.ErrorIfExists (default)

SaveMode.Append

SaveMode.Overwrite

SaveMode.Ignore

Val df=sqlCotext.load(“people.parquet”)

df.select(“name”,”age”).save(“namesAndAges.parquet”,”parquet”,SaveMode.append)

spark SQL随笔的更多相关文章

  1. Spark SQL 之 Data Sources

    #Spark SQL 之 Data Sources 转载请注明出处:http://www.cnblogs.com/BYRans/ 数据源(Data Source) Spark SQL的DataFram ...

  2. Spark SQL 之 DataFrame

    Spark SQL 之 DataFrame 转载请注明出处:http://www.cnblogs.com/BYRans/ 概述(Overview) Spark SQL是Spark的一个组件,用于结构化 ...

  3. 【原】Learning Spark (Python版) 学习笔记(三)----工作原理、调优与Spark SQL

    周末的任务是更新Learning Spark系列第三篇,以为自己写不完了,但为了改正拖延症,还是得完成给自己定的任务啊 = =.这三章主要讲Spark的运行过程(本地+集群),性能调优以及Spark ...

  4. Spark 官方文档(5)——Spark SQL,DataFrames和Datasets 指南

    Spark版本:1.6.2 概览 Spark SQL用于处理结构化数据,与Spark RDD API不同,它提供更多关于数据结构信息和计算任务运行信息的接口,Spark SQL内部使用这些额外的信息完 ...

  5. Spark SQL Example

     Spark SQL Example This example demonstrates how to use sqlContext.sql to create and load a table ...

  6. 通过Spark SQL关联查询两个HDFS上的文件操作

    order_created.txt   订单编号  订单创建时间 -- :: -- :: -- :: -- :: -- :: order_picked.txt   订单编号  订单提取时间 -- :: ...

  7. Spark SQL 之 Migration Guide

    Spark SQL 之 Migration Guide 支持的Hive功能 转载请注明出处:http://www.cnblogs.com/BYRans/ Migration Guide 与Hive的兼 ...

  8. Spark SQL 官方文档-中文翻译

    Spark SQL 官方文档-中文翻译 Spark版本:Spark 1.5.2 转载请注明出处:http://www.cnblogs.com/BYRans/ 1 概述(Overview) 2 Data ...

  9. Spark SQL 之 Performance Tuning & Distributed SQL Engine

    Spark SQL 之 Performance Tuning & Distributed SQL Engine 转载请注明出处:http://www.cnblogs.com/BYRans/ 缓 ...

随机推荐

  1. Swift基础之PickerView(时间)选择器

    代码讲解:(后面有额外代码讲解) 首页设计UIPickerView的样式设计: leftArray = ["花朵","颜色","形状"]; ...

  2. 分布式进阶(十三)Docker Container间实现数据共享

    sudo docker run -it -v /usr/lib:/usr/lib/dbdata --name dbcontainer-192.168.1.184 ubuntu:14.04 sudo d ...

  3. javascript语法之with语句

    <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/ ...

  4. EBS 外部信用风险检查

    DECLARE l_msg_count NUMBER; l_msg_data VARCHAR2(2000); l_return_status VARCHAR2(30); l_cc_hold_comme ...

  5. shell 常用正则表达式

    "^\d+$" //非负整数(正整数 + 0) "^[0-9]*[1-9][0-9]*$" //正整数 "^((-\d+)|(0+))$" ...

  6. Spring揭秘 读书笔记 五 容器的启动

    Spring的IoC容器所起的作用,就是生产bean,并维持bean间的依赖关系.它会以某种方式加载Configuration Metadata(通常也就是XML格式的配置信息),然后根据这些信息绑定 ...

  7. View,ViewGroup的Touch事件的分发机制

    原帖地址:http://blog.csdn.net/xiaanming/article/details/21696315 ViewGroup的事件分发机制 我们用手指去触摸Android手机屏幕,就会 ...

  8. Linux管理日记(二)

    14  启动内网端口转发 ### 2. 查看IP以及网卡信息 # 可以发现, eth0 的地址 inet addr:10.144.7.195, 此为内网网卡 # 公网网卡, eth1 的地址 inet ...

  9. Vim/Vi常用操作(第二版)

    周围同事不是用vim就是Emacs,你要是用一ultraedit,你都不好意思跟人家打招呼;什么插件呀,语法高亮呀,拼写检查呀,能给它开的都给它开着,就是一个字儿:酷. 你说这么牛B一东西,怎么着学会 ...

  10. 网络I/O中的同步、异步、阻塞和非阻塞概念

    在学习网络编程过程中,经常会把这几个概念搞混淆. 同步I/O与异步I/O区别 我们先来看一下操作I/O时涉及的对象和步骤(这里我们以read为例): 这里会涉及到两个系统对象,一个是调用这个I/O的应 ...