愤怒的小鸟 noip-d2t3 luogu-2831

    题目大意:给你n个点,问最少需要多少条经过原点的抛物线将其覆盖。

    注释:1<=点数<=18,1<=数据组数<=30。且规定抛物线是开口向下的。

      想法:其实一开始的想法是很偏的,就是设dp[i][j][k]表示在状态k下建立$i_{th}$和$j_{th}$的抛物线的最少条数,然后向后转移。这显然是错误的,错误原因在于... 我日,没个转移。然后看了一下lijinnn的题解...啊?切了。

      是这样的,我们通过记录每条抛物线所能覆盖的点,将其记录在数组str中,不分先后顺序。然后,我们考虑状态

        dp[s]表示达到s状态的最少条数。

      转移:

        dp[s]=min(dp[ s ] , dp[ s ^ ( s & str[ i ] ) ] + 1);

    最后,附上丑陋的代码... ...

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <cstring>
#include <cmath>
using namespace std;
typedef double db;
db ax[30],ay[30];
int n,m;
db ka,kb;
int str[1000100],cnt,dp[300100];
bool visit[1003000];
void dispose(int x,int y)
{
db tmp1=ax[x]*ax[y]*(ax[x]-ax[y]);//------------------------
db tmp2=ay[x]*ax[y]-ay[y]*ax[x];// |
if(tmp1<0)// |
{// |
tmp1=-tmp1,tmp2=-tmp2;// |
}// |
if(fabs(tmp1)<1e-6)// |
{// |
     return;//我们在计算过这两个点和原点的抛物线解析式 |
}// |
tmp1=tmp2/tmp1;// |
if(tmp1>0)// |
{// |
return;// |
}// |
ka=tmp1;// |
kb=(ay[x]-ka*ax[x]*ax[x])/ax[x];//--------------------------
int s=0;
for(int i=1;i<=n;i++)//枚举所有的点,计算该点是否在当前枚举的抛物线之内
{
db tmp=ax[i]*ax[i]*ka+kb*ax[i];
if(fabs(tmp-ay[i])<1e-6)
{
s+=(1<<(i-1));
}
}
if(!visit[s])
{
visit[s]=1;
str[++cnt]=s;//统计出一条抛物线能够杀死的pig的状态
}
return;
}
void original()
{
memset(visit,0,sizeof visit);
memset(dp,0x3f,sizeof dp);
cnt=0;
}
int main()
{
int cases;
scanf("%d",&cases);
while(cases--)
{
original();
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++)
{
scanf("%lf%lf",&ax[i],&ay[i]);
}
for(int i=1;i<=n;i++)
{
str[++cnt]=(1<<(i-1));
for(int j=1;j<=i-1;j++)
{
dispose(i,j);
}
}
dp[0]=0;
for(int s=0;s<(1<<n);s++)
{
for(int i=1;i<=cnt;i++)
{
if(s&str[i])
{
dp[s]=min(dp[s],dp[s^(s&str[i])]+1);//转移方程
}
}
}
printf("%d\n",dp[(1<<n)-1]);
}
return 0;
}

    小结:状态的选取决定着动态规划的走势----某乎上的dalao说的

[luogu2831][noip d2t3]愤怒的小鸟_状压dp的更多相关文章

  1. BZOJ_1076_[SCOI2008]奖励关_状压DP

    BZOJ_1076_[SCOI2008]奖励关_状压DP 题意: 你正在玩你最喜欢的电子游戏,并且刚刚进入一个奖励关.在这个奖励关里,系统将依次随机抛出k次宝物, 每次你都可以选择吃或者不吃(必须在抛 ...

  2. BZOJ_2064_分裂_状压DP

    BZOJ_2064_分裂_状压DP Description 背景: 和久必分,分久必和... 题目描述: 中国历史上上分分和和次数非常多..通读中国历史的WJMZBMR表示毫无压力. 同时经常搞OI的 ...

  3. BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS

    BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS Description Farmer John has taken the cows to a va ...

  4. BZOJ_5369_[Pkusc2018]最大前缀和_状压DP

    BZOJ_5369_[Pkusc2018]最大前缀和_状压DP Description 小C是一个算法竞赛爱好者,有一天小C遇到了一个非常难的问题:求一个序列的最大子段和. 但是小C并不会做这个题,于 ...

  5. 2018.10.17 NOIP模拟 管道(状压dp)

    传送门 状压dp好题. 怎么今天道道题都有点东西啊 对于今天题目神仙出题人先膜为上策:%%%%DzYoAk_UoI%%%% 设f[i][j]f[i][j]f[i][j]表示选取点的状态集合为iii,当 ...

  6. 【BZOJ2595_洛谷4294】[WC2008]游览计划(斯坦纳树_状压DP)

    上个月写的题qwq--突然想写篇博客 题目: 洛谷4294 分析: 斯坦纳树模板题. 简单来说,斯坦纳树问题就是给定一张有边权(或点权)的无向图,要求选若干条边使图中一些选定的点连通(可以经过其他点) ...

  7. Noip2016愤怒的小鸟(状压DP)

    题目描述 题意大概就是坐标系上第一象限上有N只猪,每次可以构造一条经过原点且开口向下的抛物线,抛物线可能会经过某一或某些猪,求使所有猪被至少经过一次的抛物线最少数量. 原题中还有一个特殊指令M,对于正 ...

  8. [poj1185]炮兵阵地_状压dp

    炮兵阵地 poj-1185 题目大意:给出n列m行,在其中添加炮兵,问最多能加的炮兵数. 注释:n<=100,m<=10.然后只能在平原的地方建立炮兵. 想法:第2到状压dp,++.这题显 ...

  9. 2018.09.08 NOIP模拟 division(状压dp)

    这么sb的题考场居然写挂了2233. 假设n=∏iaiki" role="presentation" style="position: relative;&qu ...

随机推荐

  1. Linux 系统裁剪笔记 3

    说到裁减Linux,无非是为了减小磁盘占用或者是为了某些特定场合的应用(如嵌入式系统).以RedHat 7.3为例,其最小安装仍然达到了300M,这不得不让人对一直号称小而全的Linux系统感到疑惑. ...

  2. 安装Android的SDK

    安装Android的SDK 1.首先,下载installer_r23.0.2-windows.exe 2.双击"installer_r23.0.2-windows.exe",进入A ...

  3. 芝麻HTTP:Ajax结果提取

    以微博为例,接下来用Python来模拟这些Ajax请求,把我发过的微博爬取下来. 1. 分析请求 打开Ajax的XHR过滤器,然后一直滑动页面以加载新的微博内容.可以看到,会不断有Ajax请求发出. ...

  4. 安装使用pyclone进行克隆演化推断

    pyclone介绍   可以根据多个样品突变的allele frequency 和 copy number,推断出有该突变的细胞克隆所占的比例(cellular prevalence)在不同样品间的变 ...

  5. python做基本的图像处理

    PIL是python中的图像处理类库,为python提供了基本的图像处理和基本操作.而PIL中最重要的就是Image模块,下面给出具体的例子来理解此模块. 读取一幅图像 我们用Image模块中的ope ...

  6. mariadb集群与nginx负载均衡配置--centos7版本

    这里配置得是单nginx主机..先准备4台主机,三台mariadb集群,一台nginx. ------------------------------------------------------- ...

  7. RobotFramework下的http接口自动化Get Response header 关键字的使用

    Get Response header 关键字用来获取http请求返回的http响应头部数据. 常见的Response Header: Header 解释 示例 Accept-Ranges 表明服务器 ...

  8. Dynamics 365中审核用户权限变化的一种方法

    摘要: 本人微信和易信公众号: 微软动态CRM专家罗勇 ,回复268或者20180311可方便获取本文,同时可以在第一间得到我发布的最新的博文信息,follow me!我的网站是 www.luoyon ...

  9. Linux入门——开机启动过程浅析

    Linux开机启动过程浅析 Introduction 开机启动过程分为以下6个步骤,分别是BIOS, MBR, GRUB, Kernel, Init, RunLevel, RunDefinition ...

  10. 期望$DP$ 方法总结

    期望\(DP\) 方法总结 这个题目太大了,变化也层出不穷,这里只是我的一点心得,不定期更新! 1. 递推式问题 对于无穷进行的操作期望步数问题,一般可用递推式解决. 对于一个问题\(ans[x]\) ...