[Luogu 1516] 青蛙的约会
Description
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L
其中0<x≠y < =2000000000,0 < m、n < =2000000000,0 < L < =2100000000。
Output
输出碰面所需要的天数,如果永远不可能碰面则输出一行"Impossible"。
Solution
原问题即求一个 k,满足 $$x + k \times m \equiv y + k \times n \quad (mod\;l)$$
变一下形: $$(x-y) + k \times (m-n) \equiv 0 \quad (mod\;l)$$
$$(x-y) + k \times (m-n) + p \times l = 0$$
$$k \times (m-n) + p \times l = y-x$$
那么原方程有解当且仅当 $gcd(m-n,l) \mid y-x$,这里即可做出判断。
下一步怎么办呢?
我们先求出 $k_0 \times (m-n) + p_0 \times l = gcd(m-n,l)$ 的一组解 $k_0,p_0$
然后 $k=k_0 \times (y-x)/gcd(m-n,l)$ 即为原方程的一组解
方程的通解即为所有模 $l/gcd(m-n,l)$ 与 k 同余的整数。
[Luogu 1516] 青蛙的约会的更多相关文章
- 解题报告:luogu P1516 青蛙的约会
题目链接:P1516 青蛙的约会 考察拓欧与推式子\(qwq\). 题意翻译? 求满足 \[\begin{cases}md+x\equiv t\pmod{l}\\nd+y\equiv t\pmod{l ...
- POJ 1061 BZOJ 1477 Luogu P1516 青蛙的约会 (扩展欧几里得算法)
手动博客搬家: 本文发表于20180226 23:35:26, 原地址https://blog.csdn.net/suncongbo/article/details/79382991 题目链接: (p ...
- [Luogu P1516]青蛙的约会
按照题意,显然可以列出同余方程,k即为所求天数,再将其化为不定方程 ,那么对这个方程用扩展欧几里德算法即可得出k,q的一组解,但是方程有解的充要条件是(m – n) 和L不同时为零并且x – y是m ...
- luogu P1516 青蛙的约会(线性同余方程扩展欧几里德)
题意 题解 做了这道题,发现扩欧快忘了. 根据题意可以很快地列出线性同余方程. 设跳了k次 x+mkΞy+nk(mod l) (m-n)kΞ-(x-y)(mod l) 然后化一下 (m-n)k+(x- ...
- POJ1061青蛙的约会[扩展欧几里得]
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 108911 Accepted: 21866 Descript ...
- poj 1061 青蛙的约会 拓展欧几里得模板
// poj 1061 青蛙的约会 拓展欧几里得模板 // 注意进行exgcd时,保证a,b是正数,最后的答案如果是负数,要加上一个膜 #include <cstdio> #include ...
- POJ 1061青蛙的约会(拓展欧几里德算法)
题目链接: 传送门 青蛙的约会 Time Limit: 1000MS Memory Limit: 65536K Description 两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见 ...
- POJ 1061 青蛙的约会
青蛙的约会 Time Limit: 1000MS Memory Limit: 10000K Total Submissions: 82859 A ...
- ACM: POJ 1061 青蛙的约会 -数论专题-扩展欧几里德
POJ 1061 青蛙的约会 Time Limit:1000MS Memory Limit:10000KB 64bit IO Format:%lld & %llu Descr ...
随机推荐
- linux的链接工具secure设置字体大小和颜色
- Mysql主从复制架构实战
[root@Mysql-master ~]# vim /etc/my.cnf log-bin=mysql-bin server-id = 1 #slave端server-id值改成2 mysql&g ...
- api-gateway实践(10)新服务网关 - OpenID Connect
网关指南: https://help.aliyun.com/document_detail/29487.html?spm=5176.doc48835.6.550.23Oqbl 网关控制台: https ...
- Docker学习笔记 - Docker的基本概念
一.cs架构 Docker客户端:本地或远程 Docker服务端:守护进程Docker Daemon 二.基本概念 Docker镜像:打包阶段,层叠的只读文件系统,引导->root(ubuntu ...
- maven常见问题处理(3-4)配置代理服务器
有的公司基于安全因素考虑,要求员工使用通过安全认证的代理访问因特网. 这时就需要为Maven配置HTTP代理. 在目录~/.m2/setting.xml文件中编辑如下(如果没有该文件,则复制$M2_H ...
- 搭建ssm框架,可实现登录和数据展示以及增删改查
需求: 后台使用ssm(spring-springMVC-mybatis)进行整合 前台使用bootstrap框架 前后台交互使用Ajax进行发送 表结构: 登录页面后显示所有用户信息,可对每条进行增 ...
- DevExpress控件的GridControl实现行多选
最近用到DevExpress控件的GridControl控件,需要用到行多选的操作,在网上找的资料,自己总结一下. 先展示一下效果:
- Java设计模式(八)Proxy代理模式
一.场景描述 代理在生活中并不少见,租房子需要找中介,打官司需要找律师,很多事情我们需要找专业人士代理我们做,另一方面,中介和律师也代理了房东.法律程序与我们打交道. 当然,设计模式中的代理与广义的代 ...
- 路由测试-lee
//get 路由 Route::get('/', 'WelcomeController@index'); Route::get('home', 'HomeController@index'); //路 ...
- [洛谷P2234][HNOI2002] 营业额统计 - Treap
Description Tiger最近被公司升任为营业部经理,他上任后接受公司交给的第一项任务便是统计并分析公司成立以来的营业情况. Tiger拿出了公司的账本,账本上记录了公司成立以来每天的营业额. ...