Simple tutorial for using TensorFlow to compute polynomial regression
"""Simple tutorial for using TensorFlow to compute polynomial regression. Parag K. Mital, Jan. 2016""" # %% Imports import numpy as np import tensorflow as tf import matplotlib.pyplot as plt # %% Let's create some toy data plt.ion() n_observations = 100 fig, ax = plt.subplots(1, 1) xs = np.linspace(-3, 3, n_observations) ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations) ax.scatter(xs, ys) fig.show() plt.draw() # %% tf.placeholders for the input and output of the network. Placeholders are # variables which we need to fill in when we are ready to compute the graph. X = tf.placeholder(tf.float32) Y = tf.placeholder(tf.float32) # %% Instead of a single factor and a bias, we'll create a polynomial function # of different polynomial degrees. We will then learn the influence that each # degree of the input (X^0, X^1, X^2, ...) has on the final output (Y). Y_pred = tf.Variable(tf.random_normal([1]), name='bias') for pow_i in range(1, 5): W = tf.Variable(tf.random_normal([1]), name='weight_%d' % pow_i) Y_pred = tf.add(tf.mul(tf.pow(X, pow_i), W), Y_pred) # %% Loss function will measure the distance between our observations # and predictions and average over them. cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) / (n_observations - 1) # %% if we wanted to add regularization, we could add other terms to the cost, # e.g. ridge regression has a parameter controlling the amount of shrinkage # over the norm of activations. the larger the shrinkage, the more robust # to collinearity. # cost = tf.add(cost, tf.mul(1e-6, tf.global_norm([W]))) # %% Use gradient descent to optimize W,b # Performs a single step in the negative gradient learning_rate = 0.01 optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost) # %% We create a session to use the graph n_epochs = 1000 with tf.Session() as sess: # Here we tell tensorflow that we want to initialize all # the variables in the graph so we can use them sess.run(tf.initialize_all_variables()) # Fit all training data prev_training_cost = 0.0 for epoch_i in range(n_epochs): for (x, y) in zip(xs, ys): sess.run(optimizer, feed_dict={X: x, Y: y}) training_cost = sess.run( cost, feed_dict={X: xs, Y: ys}) print(training_cost) if epoch_i % 100 == 0: ax.plot(xs, Y_pred.eval( feed_dict={X: xs}, session=sess), 'k', alpha=epoch_i / n_epochs) fig.show() plt.draw() # Allow the training to quit if we've reached a minimum if np.abs(prev_training_cost - training_cost) < 0.000001: break prev_training_cost = training_cost ax.set_ylim([-3, 3]) fig.show() plt.waitforbuttonpress()
Simple tutorial for using TensorFlow to compute polynomial regression的更多相关文章
- Simple tutorial for using TensorFlow to compute a linear regression
"""Simple tutorial for using TensorFlow to compute a linear regression. Parag K. Mita ...
- NNs(Neural Networks,神经网络)和Polynomial Regression(多项式回归)等价性之思考,以及深度模型可解释性原理研究与案例
1. Main Point 0x1:行文框架 第二章:我们会分别介绍NNs神经网络和PR多项式回归各自的定义和应用场景. 第三章:讨论NNs和PR在数学公式上的等价性,NNs和PR是两个等价的理论方法 ...
- TensorFlow实战之Softmax Regression识别手写数字
关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.c ...
- machine learning (6)---how to choose features, polynomial regression
how to choose features, polynomial regression:通过定义更适合我们的feature,选择更好的模型,使我们的曲线与数据更好的拟合(而不仅仅是一条直线) 可以 ...
- 机器学习-TensorFlow建模过程 Linear Regression线性拟合应用
TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构 ...
- Polynomial regression
- (转)The Road to TensorFlow
Stephen Smith's Blog All things Sage 300… The Road to TensorFlow – Part 7: Finally Some Code leave a ...
- [Tensorflow] Object Detection API - retrain mobileNet
前言 一.专注话题 重点话题 Retrain mobileNet (transfer learning). Train your own Object Detector. 这部分讲理论,下一篇讲实践. ...
- Ubuntu 14.04(64位)+GTX970+CUDA8.0+Tensorflow配置 (双显卡NVIDIA+Intel集成显卡) ------本内容是长时间的积累,有时间再详细整理
(后面内容是本人初次玩GPU时,遇到很多坑的问题总结及尝试解决办法.由于买独立的GPU安装会涉及到设备的兼容问题,这里建议还是购买GPU一体机(比如https://item.jd.com/396477 ...
随机推荐
- 《cocos2d-x游戏开发之旅》问题2016-10-7
今天按书上做,遇到问题卡住了 书P115 项目是 littlerunner
- c语言的第四次作业
(一)改错题 输出三角形的面积和周长,输入三角形的三条边a.b.c,如果能构成一个三角形,输出面积area和周长perimeter(保留2位小数):否则,输出"These sides do ...
- dfsdf
This project was bootstrapped with Create React App. Below you will find some information on how to ...
- GC机制
java虚拟机中的垃圾回收机制是,一个类,当该对象没有更多的应用指向它时,就会被垃圾回收器给回收,从而释放资源.该机制不可以程序员手动调用去回收某个对象,系统自动会去调用,当然程序员可以建议垃圾回收器 ...
- 背景重复样式background-repeat
一.background-repeat属性 在CSS中,使用background-repeat属性可以设置背景图像是否平铺,并且可以设置如何平铺. 语法: background-repeat:取值; ...
- Dapper.Contrib拓展及数据库生成实体
1.关于Dapper.Contrib Dapper.Contrib是Dapper的一个拓展类库,Dapper是一个轻量级ORM框架,这个不了解的请自行收集资料,本文主要讲讲,数据库生成实体,并通过实体 ...
- eclipse的maven操作无反应
第一 查eclipse能不能正常用 hi world.java 第二 查maven能不能正常用 cmd: mvn -v 第三 看看maven和eclipse是不是64位之类的 第四 maven和ecl ...
- java1.8十大新特性详解
"Java is still not dead-and people are starting to figure that out." 本教程将用带注释的简单代码来描述新特性,你 ...
- Python小代码_3_购物车
product_list = [ ('MacBook', 9000), ('kindle', 500), ('tesla', 900000), ('book', 100), ('bike', 2000 ...
- dnc开源梦之队2018 开源项目精选集
dnc开源梦之队2018 dnc开源项目选择标准 dnc = .NET Core.dotnet core 1.支持dnc 2.x,Github star数量100以上,最近2月活跃更新 2.轻量级.示 ...