"""Simple tutorial for using TensorFlow to compute polynomial regression.

Parag K. Mital, Jan. 2016"""
# %% Imports
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

# %% Let's create some toy data
plt.ion()
n_observations = 100
fig, ax = plt.subplots(1, 1)
xs = np.linspace(-3, 3, n_observations)
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
ax.scatter(xs, ys)
fig.show()
plt.draw()

# %% tf.placeholders for the input and output of the network. Placeholders are
# variables which we need to fill in when we are ready to compute the graph.
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)

# %% Instead of a single factor and a bias, we'll create a polynomial function
# of different polynomial degrees.  We will then learn the influence that each
# degree of the input (X^0, X^1, X^2, ...) has on the final output (Y).
Y_pred = tf.Variable(tf.random_normal([1]), name='bias')
for pow_i in range(1, 5):
    W = tf.Variable(tf.random_normal([1]), name='weight_%d' % pow_i)
    Y_pred = tf.add(tf.mul(tf.pow(X, pow_i), W), Y_pred)

# %% Loss function will measure the distance between our observations
# and predictions and average over them.
cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) / (n_observations - 1)

# %% if we wanted to add regularization, we could add other terms to the cost,
# e.g. ridge regression has a parameter controlling the amount of shrinkage
# over the norm of activations. the larger the shrinkage, the more robust
# to collinearity.
# cost = tf.add(cost, tf.mul(1e-6, tf.global_norm([W])))

# %% Use gradient descent to optimize W,b
# Performs a single step in the negative gradient
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

# %% We create a session to use the graph
n_epochs = 1000
with tf.Session() as sess:
    # Here we tell tensorflow that we want to initialize all
    # the variables in the graph so we can use them
    sess.run(tf.initialize_all_variables())

    # Fit all training data
    prev_training_cost = 0.0
    for epoch_i in range(n_epochs):
        for (x, y) in zip(xs, ys):
            sess.run(optimizer, feed_dict={X: x, Y: y})

        training_cost = sess.run(
            cost, feed_dict={X: xs, Y: ys})
        print(training_cost)

        if epoch_i % 100 == 0:
            ax.plot(xs, Y_pred.eval(
                feed_dict={X: xs}, session=sess),
                    'k', alpha=epoch_i / n_epochs)
            fig.show()
            plt.draw()

        # Allow the training to quit if we've reached a minimum
        if np.abs(prev_training_cost - training_cost) < 0.000001:
            break
        prev_training_cost = training_cost
ax.set_ylim([-3, 3])
fig.show()
plt.waitforbuttonpress()

Simple tutorial for using TensorFlow to compute polynomial regression的更多相关文章

  1. Simple tutorial for using TensorFlow to compute a linear regression

    """Simple tutorial for using TensorFlow to compute a linear regression. Parag K. Mita ...

  2. NNs(Neural Networks,神经网络)和Polynomial Regression(多项式回归)等价性之思考,以及深度模型可解释性原理研究与案例

    1. Main Point 0x1:行文框架 第二章:我们会分别介绍NNs神经网络和PR多项式回归各自的定义和应用场景. 第三章:讨论NNs和PR在数学公式上的等价性,NNs和PR是两个等价的理论方法 ...

  3. TensorFlow实战之Softmax Regression识别手写数字

         关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.c ...

  4. machine learning (6)---how to choose features, polynomial regression

    how to choose features, polynomial regression:通过定义更适合我们的feature,选择更好的模型,使我们的曲线与数据更好的拟合(而不仅仅是一条直线) 可以 ...

  5. 机器学习-TensorFlow建模过程 Linear Regression线性拟合应用

    TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构 ...

  6. Polynomial regression

  7. (转)The Road to TensorFlow

    Stephen Smith's Blog All things Sage 300… The Road to TensorFlow – Part 7: Finally Some Code leave a ...

  8. [Tensorflow] Object Detection API - retrain mobileNet

    前言 一.专注话题 重点话题 Retrain mobileNet (transfer learning). Train your own Object Detector. 这部分讲理论,下一篇讲实践. ...

  9. Ubuntu 14.04(64位)+GTX970+CUDA8.0+Tensorflow配置 (双显卡NVIDIA+Intel集成显卡) ------本内容是长时间的积累,有时间再详细整理

    (后面内容是本人初次玩GPU时,遇到很多坑的问题总结及尝试解决办法.由于买独立的GPU安装会涉及到设备的兼容问题,这里建议还是购买GPU一体机(比如https://item.jd.com/396477 ...

随机推荐

  1. 谈谈Python中的decorator装饰器,如何更优雅的重用代码

    众所周知,Python本身有很多优雅的语法,让你能用一行代码写出其他语言很多行代码才能做的事情,比如: 最常用的迭代(eg: for i in range(1,10)), 列表生成式(eg: [ x* ...

  2. SSM实战

    http://www.07net01.com/2016/07/1607717.html https://github.com/Lutils/MyForum

  3. Eclipse 一直不停 building workspace完美解决总结

    一.产生这个问题的原因多种1.自动升级 2.未正确关闭  3.maven下载lib挂起 等.. 二.解决总结(1).解决方法        方法1.修改eclipse启动文件 eclipse.ini ...

  4. Tomcat常用参数的配置

    1.修改端口号 Tomcat端口配置在server.xml文件的Connector标签中,默认为8080,可根据实际情况修改. 修改端口号 2.解决URL中文参数乱码 在server.xml文件的Co ...

  5. Angular 路由配置

    路由,简单的来说就是让组件之间进行跳转和参数的传递. 1.先在app目录下创建一个名为app.route.ts的路由组件 2.打开app.route.ts 在里面创建路由组件的代码(可通过编辑器快捷生 ...

  6. .9-浅析express源码之请求处理流程(2)

    上节漏了几个地方没有讲. 1.process_params 2.trim_prefix 3.done 分别是动态路由,深层路由与最终回调. 这节就只讲这三个地方,案例还是express-generat ...

  7. ActiveMQ消息传递的两种方式

    1.什么是ActiveMQ? ActiveMQ是apache提供的开源的,实现消息传递的一个中间插件,可以和spring整合,是目前最流行的开源消息总线,ActiveMQ是一个完全支持JMS1.1和J ...

  8. 用python爬了自己的微信,原来好友都是这样的!

    偶然了解到Python里的itchat包,它已经完成了wechat的个人账号API接口,使爬取个人微信信息更加方便.鉴于自己很早之前就想知道诸如自己微信好友性别比例都来自哪个城市之类的问题,于是乎玩心 ...

  9. lua 序列化函数

    local function f( ... ) print('hello') end local x = string.dump(f, true) loadstring(x)()

  10. [BBS]搭建开源论坛之JForum富文本编辑器更换

    本文作者:sushengmiyan  本文地址:http://blog.csdn.net/sushengmiyan/article/details/47866905 上一节我们将开发环境搭建完成,我们 ...