"""Simple tutorial for using TensorFlow to compute polynomial regression.

Parag K. Mital, Jan. 2016"""
# %% Imports
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt

# %% Let's create some toy data
plt.ion()
n_observations = 100
fig, ax = plt.subplots(1, 1)
xs = np.linspace(-3, 3, n_observations)
ys = np.sin(xs) + np.random.uniform(-0.5, 0.5, n_observations)
ax.scatter(xs, ys)
fig.show()
plt.draw()

# %% tf.placeholders for the input and output of the network. Placeholders are
# variables which we need to fill in when we are ready to compute the graph.
X = tf.placeholder(tf.float32)
Y = tf.placeholder(tf.float32)

# %% Instead of a single factor and a bias, we'll create a polynomial function
# of different polynomial degrees.  We will then learn the influence that each
# degree of the input (X^0, X^1, X^2, ...) has on the final output (Y).
Y_pred = tf.Variable(tf.random_normal([1]), name='bias')
for pow_i in range(1, 5):
    W = tf.Variable(tf.random_normal([1]), name='weight_%d' % pow_i)
    Y_pred = tf.add(tf.mul(tf.pow(X, pow_i), W), Y_pred)

# %% Loss function will measure the distance between our observations
# and predictions and average over them.
cost = tf.reduce_sum(tf.pow(Y_pred - Y, 2)) / (n_observations - 1)

# %% if we wanted to add regularization, we could add other terms to the cost,
# e.g. ridge regression has a parameter controlling the amount of shrinkage
# over the norm of activations. the larger the shrinkage, the more robust
# to collinearity.
# cost = tf.add(cost, tf.mul(1e-6, tf.global_norm([W])))

# %% Use gradient descent to optimize W,b
# Performs a single step in the negative gradient
learning_rate = 0.01
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)

# %% We create a session to use the graph
n_epochs = 1000
with tf.Session() as sess:
    # Here we tell tensorflow that we want to initialize all
    # the variables in the graph so we can use them
    sess.run(tf.initialize_all_variables())

    # Fit all training data
    prev_training_cost = 0.0
    for epoch_i in range(n_epochs):
        for (x, y) in zip(xs, ys):
            sess.run(optimizer, feed_dict={X: x, Y: y})

        training_cost = sess.run(
            cost, feed_dict={X: xs, Y: ys})
        print(training_cost)

        if epoch_i % 100 == 0:
            ax.plot(xs, Y_pred.eval(
                feed_dict={X: xs}, session=sess),
                    'k', alpha=epoch_i / n_epochs)
            fig.show()
            plt.draw()

        # Allow the training to quit if we've reached a minimum
        if np.abs(prev_training_cost - training_cost) < 0.000001:
            break
        prev_training_cost = training_cost
ax.set_ylim([-3, 3])
fig.show()
plt.waitforbuttonpress()

Simple tutorial for using TensorFlow to compute polynomial regression的更多相关文章

  1. Simple tutorial for using TensorFlow to compute a linear regression

    """Simple tutorial for using TensorFlow to compute a linear regression. Parag K. Mita ...

  2. NNs(Neural Networks,神经网络)和Polynomial Regression(多项式回归)等价性之思考,以及深度模型可解释性原理研究与案例

    1. Main Point 0x1:行文框架 第二章:我们会分别介绍NNs神经网络和PR多项式回归各自的定义和应用场景. 第三章:讨论NNs和PR在数学公式上的等价性,NNs和PR是两个等价的理论方法 ...

  3. TensorFlow实战之Softmax Regression识别手写数字

         关于本文说明,本人原博客地址位于http://blog.csdn.net/qq_37608890,本文来自笔者于2018年02月21日 23:10:04所撰写内容(http://blog.c ...

  4. machine learning (6)---how to choose features, polynomial regression

    how to choose features, polynomial regression:通过定义更适合我们的feature,选择更好的模型,使我们的曲线与数据更好的拟合(而不仅仅是一条直线) 可以 ...

  5. 机器学习-TensorFlow建模过程 Linear Regression线性拟合应用

    TensorFlow是咱们机器学习领域非常常用的一个组件,它在数据处理,模型建立,模型验证等等关于机器学习方面的领域都有很好的表现,前面的一节我已经简单介绍了一下TensorFlow里面基础的数据结构 ...

  6. Polynomial regression

  7. (转)The Road to TensorFlow

    Stephen Smith's Blog All things Sage 300… The Road to TensorFlow – Part 7: Finally Some Code leave a ...

  8. [Tensorflow] Object Detection API - retrain mobileNet

    前言 一.专注话题 重点话题 Retrain mobileNet (transfer learning). Train your own Object Detector. 这部分讲理论,下一篇讲实践. ...

  9. Ubuntu 14.04(64位)+GTX970+CUDA8.0+Tensorflow配置 (双显卡NVIDIA+Intel集成显卡) ------本内容是长时间的积累,有时间再详细整理

    (后面内容是本人初次玩GPU时,遇到很多坑的问题总结及尝试解决办法.由于买独立的GPU安装会涉及到设备的兼容问题,这里建议还是购买GPU一体机(比如https://item.jd.com/396477 ...

随机推荐

  1. bzoj3831 [Poi2014]Little Bird 单调队列优化dp

    3831: [Poi2014]Little Bird Time Limit: 20 Sec  Memory Limit: 128 MBSubmit: 505  Solved: 322[Submit][ ...

  2. bzoj3295[Cqoi2011]动态逆序对 树套树

    3295: [Cqoi2011]动态逆序对 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5987  Solved: 2080[Submit][Sta ...

  3. (转)Linux下C++开发初探

    1.开发工具 Windows下,开发工具多以集成开发环境IDE的形式展现给最终用户.例如,VS2008集成了编辑器,宏汇编ml,C /C++编译器cl,资源编译器rc,调试器,文档生成工具, nmak ...

  4. h5的input的required使用中遇到的问题

    form提交时隐藏input发生的错误 问题描述 在form表单提交的时候,有些input标签被隐藏,表单验证过程中会出现An invalid form control with name='' is ...

  5. ASP.NET Core 添加统一模型验证处理机制

    一.前言 模型验证自ASP.NET MVC便有提供,我们可以在Model(DTO)的属性上加上数据注解(Data Annotations)特性,在进入Action之前便会根据数据注解,来验证输入的数据 ...

  6. HTML5 唤起 APP

    <p><a href="xxx://app/question/95">点击跳转,直接回帖报名</a></p> /* global n ...

  7. EXISTS的使用详解

    .exists的使用场合: exists 用于只能用于子查询,可以替代in,若匹配到结果,则退出内部 查询,并将条件标志为true,传回全部结果资料,in 不管匹配到匹配不到都 全部匹配完毕,使用ex ...

  8. Azure AI 服务之语音识别

    笔者在前文<Azure AI 服务之文本翻译>中简单介绍了 Azure 认知服务中的文本翻译 API,通过这些简单的 REST API 调用就可以轻松地进行机器翻译.如果能在程序中简单的集 ...

  9. (二)ROS系统架构及概念 ROS Architecture and Concepts 以Kinetic为主更新 附课件PPT

    第2章 ROS系统架构及概念 ROS Architecture and Concepts PPT说明: 正文用白色,命令或代码用黄色,右下角为对应中文译著页码. 这一章需要掌握ROS文件系统,运行图级 ...

  10. 前端CSS技术全解(二)

    欢迎转载,转载请标明出处: http://blog.csdn.net/johnny901114/article/details/52813761 本文出自:[余志强的博客] 一.CSS三大特性 1)继 ...