UNIX环境高级编程——epoll函数使用详解
epoll - I/O event notification facility
在linux的网络编程中,很长的时间都在使用select来做事件触发。在linux新的内核中,有了一种替换它的机制,就是epoll。
相比于select,epoll最大的好处在于它不会随着监听fd数目的增长而降低效率。因为在内核中的select实现中,它是采用轮询来处理的,轮询的fd数目越多,自然耗时越多。
并且,在 linux/posix_types.h头文件有这样的声明:
#define __FD_SETSIZE 1024
表示select最多同时监听1024个fd,当然,可以通过修改头文件再重编译内核来扩大这个数目,但这似乎并不治本。
epoll的接口非常简单,一共就三个函数:
int epoll_create(int size);
创建一个epoll的句柄,size用来告诉内核这个监听的数目一共有多大。这个参数不同于select()中的第一个参数,给出最大监听的fd+1的值。需要注意的是,当创建好epoll句柄后,它就是会占用一个fd值,在linux下如果查看/proc/进程id/fd/,是能够看到这个fd的,所以在使用完epoll后,必须调用close()关闭,否则可能导致fd被耗尽。
int epoll_ctl(int epfd, int op, int fd, struct epoll_event *event);
epoll的事件注册函数,它不同与select()是在监听事件时告诉内核要监听什么类型的事件,而是在这里先注册要监听的事件类型。第一个参数是epoll_create()的返回值,第二个参数表示动作,用三个宏来表示:
- EPOLL_CTL_ADD:注册新的fd到epfd中;
- EPOLL_CTL_MOD:修改已经注册的fd的监听事件;
- EPOLL_CTL_DEL:从epfd中删除一个fd;
第三个参数是需要监听的fd,第四个参数是告诉内核需要监听什么事,struct epoll_event结构如下:
typedef union epoll_data {
void *ptr;
int fd;
__uint32_t u32;
__uint64_t u64;
} epoll_data_t; struct epoll_event {
__uint32_t events; /* Epoll events */
epoll_data_t data; /* User data variable */
};
结构体struct epoll_event成员events可以是以下几个宏的集合:
- EPOLLIN :表示对应的文件描述符可以读(包括对端SOCKET正常关闭);
- EPOLLOUT:表示对应的文件描述符可以写;
- EPOLLPRI:表示对应的文件描述符有紧急的数据可读(这里应该表示有带外数据到来);
- EPOLLERR:表示对应的文件描述符发生错误;
- EPOLLHUP:表示对应的文件描述符被挂断;
- EPOLLET: 将EPOLL设为边缘触发(Edge Triggered)模式,这是相对于水平触发(Level Triggered)来说的。缺省是水平触发(Level Triggered)。
- EPOLLONESHOT:只监听一次事件,当监听完这次事件之后,如果还需要继续监听这个socket的话,需要再次把这个socket加入到EPOLL队列里。
int epoll_wait(int epfd, struct epoll_event * events, int maxevents, int timeout);
等待事件的产生,类似于select()调用。当epoll_wait返回成功时,参数events用来从内核得到所有的读写事件(从内核返回给用户),maxevents告之内核需要监听的所有的socket的句柄数(从用户传给内核),这个 maxevents的值不能大于创建epoll_create()时的size,参数timeout是超时时间(毫秒,0会立即返回,-1将不确定,也有说法说是永久阻塞)。该函数返回需要处理的事件数目,如返回0表示已超时。
epoll_wait 返回值: 0表示超时; -1表示错误; 大于0表示返回的需要处理的事件数目。
epoll_wait运行的原理是:等侍注册在epfd上的socket fd的事件的发生,如果发生则将发生的sokct fd和事件类型放入到events数组中。并 且将注册在epfd上的socket fd的事件类型给清空,所以如果下一个循环你还要关注这个socket fd的话,则需要epoll_ctl(epfd,EPOLL_CTL_MOD,listenfd,&ev)来重新设置socket fd的事件类型。这时不用EPOLL_CTL_ADD,因为socket fd并未清空,只是事件类型清空。这一步非常重要。
关于ET、LT两种工作模式:
LT(level triggered)是缺省的工作方式,并且同时支持block和no-block socket。在这种做法中,内核告诉你一个文件描述符是否就绪了,然后你可以对这个就绪的fd进行IO操作。如果你不作任何操作,内核还是会继续通知你的,所以,这种模式编程出错误可能性要小一点。传统的select/poll都是这种模型的代表。
ET (edge-triggered)是高速工作方式,只支持no-block socket。在这种模式下,当描述符从未就绪变为就绪时,内核通过epoll告诉你。然后它会假设你知道文件描述符已经就绪,并且不会再为那个文件描述符发送更多的就绪通知(仅仅发送一次),直到你做了某些操作导致那个文件描述符不再为就绪状态了(比如,你在发送,接收或者接收请求,或者发送接收的数据少于一定量时导致了一个EWOULDBLOCK 错误)。但是请注意,如果一直不对这个fd作IO操作(从而导致它再次变成未就绪),内核不会发送更多的通知(only once),不过在TCP协议中,ET模式的加速效用仍需要更多的benchmark确认。
ET和LT的区别就在这里体现,LT事件不会丢弃,而是只要读buffer里面有数据可以让用户读,则不断的通知你。而ET则只在事件发生之时通知。可以简单理解为LT是水平触发,而ET则为边缘触发。LT模式只要有事件未处理就会触发,而ET则只在高低电平变换时(即状态从1到0或者0到1)触发。
可以得出这样的结论:
ET模式仅当状态发生变化的时候才获得通知,这里所谓的状态的变化并不包括缓冲区中还有未处理的数据,也就是说,如果要采用ET模式,需要一直read/write直到出错为止,很多人反映为什么采用ET模式只接收了一部分数据就再也得不到通知了,大多因为这样;而LT模式是只要有数据没有处理就会一直通知下去的。
那么究竟如何来使用epoll呢?其实非常简单。
通过在包含一个头文件#include <sys/epoll.h> 以及几个简单的API将可以大大的提高你的网络服务器的支持人数。
首先通过create_epoll(int maxfds)来创建一个epoll的句柄,其中maxfds为你epoll所支持的最大句柄数。这个函数会返回一个新的epoll句柄,之后的所有操作将通过这个句柄来进行操作。在用完之后,记得用close()来关闭这个创建出来的epoll句柄。
之后在你的网络主循环里面,每一帧的调用epoll_wait(int epfd, strcuct epoll_event* events, int maxevents, int timeout)来查询所有的网络接口,看哪一个可以读,哪一个可以写了。基本的语法为:
nfds = epoll_wait(kdpfd, events, maxevents, -1);
其中kdpfd为用epoll_create创建之后的句柄,events是一个epoll_event*的指针,当epoll_wait这个函数操作成功之后,epoll_events里面将储存所有的读写事件。maxevents是当前需要监听的所有socket句柄数。最后一个timeout是 epoll_wait的超时,为0的时候表示马上返回,为-1的时候表示一直等下去,直到有事件范围,为任意正整数的时候表示等这么长的时间,如果一直没有事件,则范围。一般如果网络主循环是单独的线程的话,可以用-1来等,这样可以保证一些效率,如果是和主逻辑在同一个线程的话,则可以用0来保证主循环的效率。
epoll_wait范围之后应该是一个循环,遍利所有的事件。
几乎所有的epoll程序都使用下面的框架:
for( ; ; )
{
nfds = epoll_wait(epfd,events,20,500);
for(i=0;i<nfds;++i)
{
if(events[i].data.fd==listenfd) //有新的连接
{
connfd = accept(listenfd,(sockaddr *)&clientaddr, &clilen); //accept这个连接
ev.data.fd=connfd;
ev.events=EPOLLIN|EPOLLET;
epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev); //将新的fd添加到epoll的监听队列中
}
else if( events[i].events&EPOLLIN ) //接收到数据,读socket
{
n = read(sockfd, line, MAXLINE)) < 0 //读
ev.data.ptr = md; //md为自定义类型,添加数据
ev.events=EPOLLOUT|EPOLLET;
epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);//修改标识符,等待下一个循环时发送数据,异步处理的精髓
}
else if(events[i].events&EPOLLOUT) //有数据待发送,写socket
{
struct myepoll_data* md = (myepoll_data*)events[i].data.ptr; //取数据
sockfd = md->fd;
send( sockfd, md->ptr, strlen((char*)md->ptr), 0 ); //发送数据
ev.data.fd=sockfd;
ev.events=EPOLLIN|EPOLLET;
epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev); //修改标识符,等待下一个循环时接收数据
}
else
{
//其他的处理
}
}
}
下面给出一个完整的服务器端例子:可以参考<<UNIX网络编程——epoll 的accept , read, write(重要)>>,下面的代码需要改进。<<UNIX网络编程——epoll 的accept , read, write(重要)>>里面的设计比较好。
#include <iostream>
#include <sys/socket.h>
#include <sys/epoll.h>
#include <netinet/in.h>
#include <arpa/inet.h>
#include <fcntl.h>
#include <unistd.h>
#include <stdio.h>
#include <errno.h> using namespace std; #define MAXLINE 5
#define OPEN_MAX 100
#define LISTENQ 20
#define SERV_PORT 5000
#define INFTIM 1000 void setnonblocking(int sock)
{
int opts;
opts=fcntl(sock,F_GETFL);
if(opts<0)
{
perror("fcntl(sock,GETFL)");
exit(1);
}
opts = opts|O_NONBLOCK;
if(fcntl(sock,F_SETFL,opts)<0)
{
perror("fcntl(sock,SETFL,opts)");
exit(1);
}
} int main(int argc, char* argv[])
{
int i, maxi, listenfd, connfd, sockfd,epfd,nfds, portnumber;
ssize_t n;
char line[MAXLINE];
socklen_t clilen; if ( 2 == argc )
{
if( (portnumber = atoi(argv[1])) < 0 )
{
fprintf(stderr,"Usage:%s portnumber/a/n",argv[0]);
return 1;
}
}
else
{
fprintf(stderr,"Usage:%s portnumber/a/n",argv[0]);
return 1;
} //声明epoll_event结构体的变量,ev用于注册事件,数组用于回传要处理的事件 struct epoll_event ev,events[20];
//生成用于处理accept的epoll专用的文件描述符 epfd=epoll_create(256);
struct sockaddr_in clientaddr;
struct sockaddr_in serveraddr;
listenfd = socket(AF_INET, SOCK_STREAM, 0);
//把socket设置为非阻塞方式 //setnonblocking(listenfd); //设置与要处理的事件相关的文件描述符 ev.data.fd=listenfd;
//设置要处理的事件类型 ev.events=EPOLLIN|EPOLLET;
//ev.events=EPOLLIN; //注册epoll事件 epoll_ctl(epfd,EPOLL_CTL_ADD,listenfd,&ev);
bzero(&serveraddr, sizeof(serveraddr));
serveraddr.sin_family = AF_INET;
char *local_addr="127.0.0.1";
inet_aton(local_addr,&(serveraddr.sin_addr));//htons(portnumber); serveraddr.sin_port=htons(portnumber);
bind(listenfd,(sockaddr *)&serveraddr, sizeof(serveraddr));
listen(listenfd, LISTENQ);
maxi = 0;
for ( ; ; ) {
//等待epoll事件的发生 nfds=epoll_wait(epfd,events,20,500);
//处理所发生的所有事件 for(i=0;i<nfds;++i)
{
if(events[i].data.fd==listenfd)//如果新监测到一个SOCKET用户连接到了绑定的SOCKET端口,建立新的连接。 {
connfd = accept(listenfd,(sockaddr *)&clientaddr, &clilen);
if(connfd<0){
perror("connfd<0");
exit(1);
}
//setnonblocking(connfd); char *str = inet_ntoa(clientaddr.sin_addr);
cout << "accapt a connection from " << str << endl;
//设置用于读操作的文件描述符 ev.data.fd=connfd;
//设置用于注测的读操作事件 ev.events=EPOLLIN|EPOLLET;
//ev.events=EPOLLIN; //注册ev epoll_ctl(epfd,EPOLL_CTL_ADD,connfd,&ev);
}
else if(events[i].events&EPOLLIN)//如果是已经连接的用户,并且收到数据,那么进行读入。 {
cout << "EPOLLIN" << endl;
if ( (sockfd = events[i].data.fd) < 0)
continue;
if ( (n = read(sockfd, line, MAXLINE)) < 0) {
if (errno == ECONNRESET) {
close(sockfd);
events[i].data.fd = -1;
} else
std::cout<<"readline error"<<std::endl;
} else if (n == 0) {
close(sockfd);
events[i].data.fd = -1;
}
line[n] = '/0';
cout << "read " << line << endl;
//设置用于写操作的文件描述符 ev.data.fd=sockfd;
//设置用于注测的写操作事件 ev.events=EPOLLOUT|EPOLLET;
//修改sockfd上要处理的事件为EPOLLOUT //epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev); }
else if(events[i].events&EPOLLOUT) // 如果有数据发送 {
sockfd = events[i].data.fd;
write(sockfd, line, n);
//设置用于读操作的文件描述符 ev.data.fd=sockfd;
//设置用于注测的读操作事件 ev.events=EPOLLIN|EPOLLET;
//修改sockfd上要处理的事件为EPOLIN epoll_ctl(epfd,EPOLL_CTL_MOD,sockfd,&ev);
}
}
}
return 0;
}
UNIX环境高级编程——epoll函数使用详解的更多相关文章
- UNIX环境高级编程——system函数
system函数 功能:调用fork产生子进程,由子进程来调用:/bin/sh -c command来执行参数command所代表的命令,阻塞当前进程直到command命 令执行完毕. int sys ...
- 【转】apue《UNIX环境高级编程第三版》第一章答案详解
原文网址:http://blog.csdn.net/hubbybob1/article/details/40859835 大家好,从这周开始学习apue<UNIX环境高级编程第三版>,在此 ...
- UNIX环境高级编程——sigqueue、sigsuspend函数
一.sigqueue函数 功能:新的发送信号系统调用,主要是针对实时信号提出的支持信号带有参数,与函数sigaction()配合使用. int sigqueue(pid_t pid, int sig, ...
- UNIX环境高级编程——TCP/IP网络编程 常用网络信息检索函数
UNIX环境高级编程——TCP/IP网络编程 常用网络信息检索函数 gethostname() getppername() getsockname() gethostbyname() ...
- (十三) [终篇] 一起学 Unix 环境高级编程 (APUE) 之 网络 IPC:套接字
. . . . . 目录 (一) 一起学 Unix 环境高级编程 (APUE) 之 标准IO (二) 一起学 Unix 环境高级编程 (APUE) 之 文件 IO (三) 一起学 Unix 环境高级编 ...
- (五) 一起学 Unix 环境高级编程 (APUE) 之 进程环境
. . . . . 目录 (一) 一起学 Unix 环境高级编程 (APUE) 之 标准IO (二) 一起学 Unix 环境高级编程 (APUE) 之 文件 IO (三) 一起学 Unix 环境高级编 ...
- (十一) 一起学 Unix 环境高级编程 (APUE) 之 高级 IO
. . . . . 目录 (一) 一起学 Unix 环境高级编程 (APUE) 之 标准IO (二) 一起学 Unix 环境高级编程 (APUE) 之 文件 IO (三) 一起学 Unix 环境高级编 ...
- Unix 环境高级编程 (APUE) 之 网络 IPC:套接字
一起学 Unix 环境高级编程 (APUE) 之 网络 IPC:套接字 . . . . . 目录 (一) 一起学 Unix 环境高级编程 (APUE) 之 标准IO (二) 一起学 Unix 环境高级 ...
- multiple definition of `err_sys' 《UNIX环境高级编程》
本文地址:http://www.cnblogs.com/yhLinux/p/4079930.html 问题描述: [点击此处直接看解决方案] 在练习<UNIX环境高级编程>APUE程序清单 ...
随机推荐
- JAVA解析XML文件(DOM,SAX,JDOM,DOM4j附代码实现)
1.解析XML主要有四种方式 1.DOM方式解析XML(与平台无关,JAVA提供,一次性加载XML文件内容,形成树结构,不适用于大文件) 2.SAX方式解析XML(基于事件驱动,逐条解析,适用于只处理 ...
- 索引法则--IS NULL, IS NOT NULL 也无法使用索引
Mysql 系列文章主页 =============== 1 数据准备 1.1 建表 DROP TABLE IF EXISTS staff; CREATE TABLE IF NOT EXISTS st ...
- JButton
JButton和Button区别: Button是在java.awt.*中的,而JButton是在javax.swing.*中,swing是awt的一个扩展,由纯java便携,它有一个与平台无关的实现 ...
- ECC公钥格式详解
本文首先介绍公钥格式相关的若干概念/技术,随后以示例的方式剖析DER格式的ECC公钥,最后介绍如何使用Java生成.解析和使用ECC公钥. ASN.1 Abstract Syntax Notation ...
- Rails中rspec测试xxx_path调用失败的解决
首先要想生成类似于home_path,about_path之类的方法,必须在路由文件中添加对应方法: match '/help',to:"static_pages#help",vi ...
- 安卓高级9 用原生intent分享
大家都用过安卓app时发现有个分享按钮如下: 所以今天特此分享用用原生完成: package qianfeng.com.simplesharedemo; import android.content. ...
- Redis之(七)主从同步与集群管理
8.1 主从同步原理 像MySQL一样,Redis是支持主从同步的,而且也支持一主多从以及多级从结构. 主从结构,一是为了纯粹的冗余备份,二是为了提升读性能,比如很消耗性能的SORT就可以由从服务器来 ...
- Github Atom开源文本代码编辑器- 由 Github 打造的下一代编程开发利器
个人理解:Github 热度超凡的一个项目Atom,electron是整个atom的核心,对于electron可以理解成 electron =io.js + Chromium 通过 Electr ...
- TV Metro界面(仿泰捷视频TV版)源码解析
转载请把头部出处链接和尾部二维码一起转载,本文出自逆流的鱼yuiop:http://blog.csdn.net/hejjunlin/article/details/52822499 前言:上一篇介绍了 ...
- Ubuntu等Linux系统显卡性能测试软件 Unigine 3D
Ubuntu等Linux系统显卡性能测试软件 Unigine 3D Ubuntu Intel显卡驱动安装,请参考: http://blog.csdn.net/zhangrelay/article/de ...