CAS指令
public final native boolean compareAndSwapObject(Object var1, long var2, Object var4, Object var5); public final native boolean compareAndSwapInt(Object var1, long var2, int var4, int var5); public final native boolean compareAndSwapLong(Object var1, long var2, long var4, long var6);
#define FN_PTR(f) CAST_FROM_FN_PTR(void*, &f) {CC"compareAndSwapObject", CC"("OBJ"J"OBJ""OBJ")Z", FN_PTR(Unsafe_CompareAndSwapObject)}, {CC"compareAndSwapInt", CC"("OBJ"J""I""I"")Z", FN_PTR(Unsafe_CompareAndSwapInt)}, {CC"compareAndSwapLong", CC"("OBJ"J""J""J"")Z", FN_PTR(Unsafe_CompareAndSwapLong)},
1 jbyte Atomic::cmpxchg(jbyte exchange_value, volatile jbyte*dest, jbyte compare_value) {
2 assert (sizeof(jbyte) == 1,"assumption.");
3 uintptr_t dest_addr = (uintptr_t) dest;
4 uintptr_t offset = dest_addr % sizeof(jint);
5 volatile jint*dest_int = ( volatile jint*)(dest_addr - offset);
6 // 对象当前值
7 jint cur = *dest_int;
8 // 当前值cur的地址
9 jbyte * cur_as_bytes = (jbyte *) ( & cur);
10 // new_val地址
11 jint new_val = cur;
12 jbyte * new_val_as_bytes = (jbyte *) ( & new_val);
13 // new_val存exchange_value,后面修改则直接从new_val中取值
14 new_val_as_bytes[offset] = exchange_value;
15 // 比较当前值与期望值,如果相同则更新,不同则直接返回
16 while (cur_as_bytes[offset] == compare_value) {
17 // 调用汇编指令cmpxchg执行CAS操作,期望值为cur,更新值为new_val
18 jint res = cmpxchg(new_val, dest_int, cur);
19 if (res == cur) break;
20 cur = res;
21 new_val = cur;
22 new_val_as_bytes[offset] = exchange_value;
23 }
24 // 返回当前值
25 return cur_as_bytes[offset];
26 }
1 // 类的定义:
2 public class AtomicStampedReference<V>
3 // 构造函数,将对象和标记值传入
4 public AtomicStampedReference(V initialRef, int initialStamp) {
5 pair = Pair.of(initialRef, initialStamp);
6 }
7 // 参数代表的含义分别是 期望值,写入的新值,期望标记,新标记值
8 public boolean compareAndSet(V expectedReference,
9 V newReference,
10 int expectedStamp,
11 int newStamp) {
12 Pair<V> current = pair;
13 // 比较原对象的同时比较版本号是否也相同,如果都相同则进行pair的cas操作
14 return
15 expectedReference == current.reference &&
16 expectedStamp == current.stamp &&
17 ((newReference == current.reference &&
18 newStamp == current.stamp) ||
19 casPair(current, Pair.of(newReference, newStamp)));
20 }
21 // 如果在这之前已经有线程对pair进行更新,则会执行失败
22 private boolean casPair(Pair<V> cmp, Pair<V> val) {
23 return UNSAFE.compareAndSwapObject(this, pairOffset, cmp, val);
24 }
25 public V getRerference();
26 public int getStamp();
27 public void set(V newReference,int newStamp);
CAS指令的更多相关文章
- 硬件对同步的支持-TAS和CAS指令
目录 Test and Set Compare and Swap 使用CAS实现线程安全的数据结构. 现在主流的多处理器架构都在硬件水平上提供了对并发同步的支持. 今天我们讨论两个很重要的硬件同步指令 ...
- 从ObjectPool到CAS指令
相信最近看过我的文章的朋友对于Microsoft.Extensions.ObjectPool不陌生:复用.池化是在很多高性能场景的优化技巧,它能减少内存占用率.降低GC频率.提升系统TPS和降低请求时 ...
- Netty的并发编程实践3:CAS指令和原子类
互斥同步最主要的问题就是进行线程阻塞和唤醒所带来的性能的额外损耗,因此这种同步被称为阻塞同步,它属于一种悲观的并发策略,我们称之为悲观锁.随着硬件和操作系统指令集的发展和优化,产生了非阻塞同步,被称为 ...
- Java的多线程机制系列:(二)缓存一致性和CAS
一.总线锁定和缓存一致性 这是两个操作系统层面的概念.随着多核时代的到来,并发操作已经成了很正常的现象,操作系统必须要有一些机制和原语,以保证某些基本操作的原子性.首先处理器需要保证读一个字节或写一个 ...
- JAVA CAS原理深度分析-转载
参考文档: http://www.blogjava.net/xylz/archive/2010/07/04/325206.html http://blog.hesey.net/2011/09/reso ...
- [数据库事务与锁]详解八:底理解数据库事务乐观锁的一种实现方式——CAS
注明: 本文转载自http://www.hollischuang.com/archives/1537 在深入理解乐观锁与悲观锁一文中我们介绍过锁.本文在这篇文章的基础上,深入分析一下乐观锁的实现机制, ...
- 非阻塞同步算法与CAS(Compare and Swap)无锁算法
锁(lock)的代价 锁是用来做并发最简单的方式,当然其代价也是最高的.内核态的锁的时候需要操作系统进行一次上下文切换,加锁.释放锁会导致比较多的上下文切换和调度延时,等待锁的线程会被挂起直至锁释放. ...
- 并发中的Native方法,CAS操作与ABA问题
Native方法,Unsafe与CAS操作 >>JNI和Native方法 Java中,通过JNI(Java Native Interface,java本地接口)来实现本地化,访问操作系统底 ...
- JAVA CAS原理
转自: http://blog.csdn.net/hsuxu/article/details/9467651 CAS CAS: Compare and Swap java.util.concurren ...
随机推荐
- Educational Codeforces Round 64 C. Match Points 【二分思想】
一 题面 C. Match Points 二 分析 根据题意很容易想到要去找满足条件的数,因为可以打乱输入的顺序,所以很容易想到二分. 但是如果直接对输入的数组进行二分,如输入$a$,直接在数组里二分 ...
- 画直线的算法之DDA算法+代码实现(法一)
DDA(数值微分法)基于直线微分方程生成直线. 点xi,yi满足直线方程yi=kxi+b, 若xi增加一个单位,则下一步点的位置(xi + 1,yi+1)满足yi+1=k(xi + 1)+ b. 即y ...
- .NET团队送给.NET开发人员的云原生学习资源
企业正在迅速采用云的功能来满足用户需求,提高应用程序的可伸缩性和可用性.要完全拥抱云并优化节约成本,就需要在设计应用程序时考虑到云的环境,也就是要用云原生的应用开发方法.这意味着不仅要更改应用程序的构 ...
- C++中的间接宏函数
宏函数对于每个C++程序员都决不陌生,就算是初出茅庐的C++程序员也知道如何定义.使用宏函数. 但是当初学者看到类似于以下这种宏函数嵌套的时候,可能还是会比较嘀咕, #define CONVERT ...
- [Fundamental of Power Electronics]-PART I-3.稳态等效电路建模,损耗和效率-3.4 如何获得模型的输入端口
3.4 如何获得模型的输入端口 Fig 3.16 Buck converter example 让我们尝试使用3.3.3节的步骤来推导图3.16所示的Buck变换器的模型.电感绕组电阻同样由串联电阻\ ...
- 2020 OO 第一单元总结 表达式求导
title: BUAA-OO 第一单元总结 date: 2020-03-19 20:53:41 tags: OO categories: 学习 OO第一单元通过三次递进式的作业让我们实现表达式求导,在 ...
- 美团点评技术专家 帮你快速上手跨平台开发框架Flutter
Flutter并没有开创新的概念,它背后的框架原理和底层设计思想,与原生Android/iOS开发并没有本质区别,甚至从React.Native中吸收了不少优秀的设计理念. Flutter是Googl ...
- JavaWeb 补充(XML)
XML 1. 概念:Extensible Markup Language 可扩展标记语言 可扩展:标签都是自定义的. <user> <student> 功能: 存储数据 ...
- 976. Largest Perimeter Triangle
Given an array A of positive lengths, return the largest perimeter of a triangle with non-zero area, ...
- ES系列(四):http请求分发框架解析
上一篇讲解了es的网络通信模块实现过程,大致明白其工作原理.再总结一下,就是基于netty编程范式,形成es通信基础.从而,最终我们得到几个重要的handler: Netty4HttpPipelini ...