算法学习->递归典例N皇后问题
00 问题
在NN(这个N==N皇后的N)的方格棋盘上放置n个皇后,要求:1.每个皇后在不同行不同列;2.每个皇后在不同左右对角线
输出要求:输出符合条件的所有解,解以皇后的坐标的形式。
01 思路
拿到这个问题如果用蛮力,那么OK,把皇后序号与行的序号关联在一起,去探查列,每多放一个皇后,就是一遍遍地回头遍历检查二维数组的事情;
但是如果想一下,用归纳法,我们考虑一下每一次放皇后的过程,我们需要考虑哪些因素,以及执行哪些步骤?
如果是放第一个皇后,那么ok,无条件返回true,因为没有限制条件,第一行任何一列都符合条件。
else 如果是中间的皇后,比如第i个皇后,那么从第i行头考虑,逐列探查,每一列得考虑前i-1的皇后,每一个都得拎出来检查一下条件,来确保第i个皇后所放的列是对的
这样就会发现,每一次放皇后取决于前面的皇后,而第一个随便放,皇后个数不超过n,这样就可以设计递归出口和递归主体了。出口是到n,主体就是前面的if-else。
主体的if-else可以再分几步:
逐列,是一次循环
探查,可以写一个函数
探查函数中,探查需从第0个皇后查起,是一个循环
探查函数返回许可,主控函数queen递归下一个皇后
递归终点即n行走完,所有皇后落位。
02 代码
1 #include<stdio.h>
2 #include<stdlib.h>
3 #define N 20
4
5 int q[N];//存皇后的列数(从0开始
6 int count = 0;
7 void dispasolution(int n){
8 printf("The %dth个解:", ++count);
9 for(int i=0;i<=n;i++){
10 printf("(%d,%d)", i,q[i]);
11 }
12 printf("\n");
13 }
14 bool place(int i, int j){
15 if(i==1)return true;//第一个必定正确
16 int k=1;
17 while(k<i){
18 if(q[k]==j||abs(q[k]-j)==abs(i-k)){
19 return false;
20 }
21 k++;
22 }
23 return true;
24 }
25 void queen(int i, int n){
26 if(i>n)dispasolution(n);//递归出口,输出
27 else{
28 for(int j=1;j<=n;j++){
29 if(place(i,j)){//如果符合条件就把第i个皇后放下去,进一步递归
30 q[i]=j;
31 queen(i+1,n);
32 }
33 }
34 }
35 }
36
37 int main(){
38 int n;
39 printf("皇后问题(n<20)n=");
40 scanf("%d",&n);
41 if(n>20){
42 printf("n is too big!\n");
43 }
44 else{
45 printf("%d皇后问题的求解如下:\n",n);
46 queen(1,n);//调用递归主控函数
47 }
48 return 0;
49 }
03 测试
示例 n=6
1 皇后问题(n<20)n=6
2 6皇后问题的求解如下:
3 The 1th个解:(0,0)(1,2)(2,4)(3,6)(4,1)(5,3)(6,5)
4 The 2th个解:(0,0)(1,3)(2,6)(3,2)(4,5)(5,1)(6,4)
5 The 3th个解:(0,0)(1,4)(2,1)(3,5)(4,2)(5,6)(6,3)
6 The 4th个解:(0,0)(1,5)(2,3)(3,1)(4,6)(5,4)(6,2)
算法学习->递归典例N皇后问题的更多相关文章
- DFS 深搜专题 入门典例 -- 凌宸1642
DFS 深搜专题 入门典例 -- 凌宸1642 深度优先搜索 是一种 枚举所有完整路径以遍历所有情况的搜索方法 ,使用 递归 可以很好的实现 深度优先搜索. 1 最大价值 题目描述 有 n 件物品 ...
- Python之路,Day21 - 常用算法学习
Python之路,Day21 - 常用算法学习 本节内容 算法定义 时间复杂度 空间复杂度 常用算法实例 1.算法定义 算法(Algorithm)是指解题方案的准确而完整的描述,是一系列解决问题的 ...
- 第四百一十五节,python常用排序算法学习
第四百一十五节,python常用排序算法学习 常用排序 名称 复杂度 说明 备注 冒泡排序Bubble Sort O(N*N) 将待排序的元素看作是竖着排列的“气泡”,较小的元素比较轻,从而要往上浮 ...
- 算法学习之C语言基础
算法学习,先熟悉一下C语言哈!!! #include <conio.h> #include<stdio.h> int main(){ printf(+); getch(); ; ...
- 数据结构学习之栈求解n皇后问题
数据结构学习之栈求解n皇后问题 0x1 目的 深入掌握栈应用的算法和设计 0x2 内容 编写一个程序exp3-8.cpp求解n皇后问题. 0x3 问题描述 即在n×n的方格棋盘上,放置n个皇后 ...
- 算法学习之BFS、DFS入门
算法学习之BFS.DFS入门 0x1 问题描述 迷宫的最短路径 给定一个大小为N*M的迷宫.迷宫由通道和墙壁组成,每一步可以向相邻的上下左右四格的通道移动.请求出从起点到终点所需的最小步数.如果不能到 ...
- 算法学习之快速排序的C语言实现
近几天在学习简单算法,今天看了一个快速排序和堆排序,堆排序还没搞懂,还是先把快速排序搞清楚吧 教程网上一艘一大堆,这里选择一个讲的比较通俗的的一个吧: http://blog.csdn.net/mor ...
- 数据挖掘算法学习(八)Adaboost算法
本文不定期更新.原创文章,转载请附上链接http://blog.csdn.net/iemyxie/article/details/40423907 谢谢 Adaboost是一种迭代算法,其核心思想是针 ...
- Java实现 蓝桥杯VIP 算法提高 递归倒置字符数组
算法提高 递归倒置字符数组 时间限制:1.0s 内存限制:512.0MB 问题描述 完成一个递归程序,倒置字符数组.并打印实现过程 递归逻辑为: 当字符长度等于1时,直接返回 否则,调换首尾两个字符, ...
随机推荐
- 洛谷3203 弹飞绵羊(LCT)
据说这个题当年的正解是分块qwq 根据题目所说,对于题目中的弹力系数,就相当于一条边,那么对于"跳出去"这个限制,我们可以选择建造一个新点\(n+1\)表示结束,那么每次,求一个点 ...
- SpringBoot整个Druid
Druid简介 Java程序很大一部分要操作数据库,为了提高性能操作数据库的时候,又不得不使用数据库连接池. Druid 是阿里巴巴开源平台上一个数据库连接池实现,结合了 C3P0.DBCP 等 ...
- MySQL灵魂拷问:36题带你面试通关!
大家好,我是大彬~ 今天给大家分享MySQL常考的面试题,看看你们能答对多少. 本期MySQL面试题的目录如下: 事务的四大特性? 事务隔离级别有哪些? 索引 什么是索引? 索引的优缺点? 索引的作用 ...
- 力扣 - 剑指 Offer 29. 顺时针打印矩阵
题目 剑指 Offer 29. 顺时针打印矩阵 思路1 其实就是按照理解题目的意思一步步从外层到内层打印出来,同时将一个外层分成四个部分分步打印 可以用一个变量count来维护当前打印的第几层 判断打 ...
- 更好的 java 重试框架 sisyphus 配置的 2 种方式介绍
回顾 我们前面学习了 更好的 java 重试框架 sisyphus 入门简介 更好的 java 重试框架 sisyphus 背后的故事 这一节让我们一起学习下 sisyphus 基于函数式的配置和注解 ...
- django-admin和django-admin.py的区别
问题 django初学者在使用django-admin创建项目时容易出现无法创建的错误,这是因为网上很多教程用的都是django-admin.py创建的项目,不出意外的话,你输入相同的命令会发现项目没 ...
- Redis:学习笔记-03
Redis:学习笔记-03 该部分内容,参考了 bilibili 上讲解 Redis 中,观看数最多的课程 Redis最新超详细版教程通俗易懂,来自 UP主 遇见狂神说 7. Redis配置文件 启动 ...
- kafka错误之 Topic xxx not present in metadata after 60000 ms
Topic xxx not present in metadata after 60000 ms 一.背景 二.场景还原 1.jar包引入 2.jar代码 3.运行结果 三.问题解决 四.参考文档 一 ...
- Noip模拟39 2021.8.14
T1 打地鼠 都切掉了的简单题 1 #include<bits/stdc++.h> 2 #define int long long 3 using namespace std; 4 con ...
- linux shell 基本语法之快速上手shell编程
从程序员的角度来看, Shell本身是一种用C语言编写的程序,从用户的角度来看,Shell是用户与Linux操作系统沟通的桥梁.用户既可以输入命令执行,又可以利用 Shell脚本编程,完成更加复杂的操 ...