记$dep(T)$为树$T$的深度(根节点深度为0),则有$\begin{cases}dep(A+B)=\max(dep(A),dep(B))\\dep(A\cdot B)=dep(A)+dep(B)\end{cases}$

考虑$C$中最深的点,对其来源于$AX$还是$BY$分类讨论(不妨假设是前者),再取出其深度为$dep(A)$的祖先,那么$X$即只能取该祖先的子树

确定$X$后,求出$AX$并在$C$中去掉,再类似地求出$Y$并判定即可

过程中需要实现一个树同构的判定,简单哈希即可

时间复杂度为$o(n\log n)$,可以通过

(实现可能略微有一些繁琐,由于无法提交并不保证代码正确,仅供参考)

  1 #include<bits/stdc++.h>
2 using namespace std;
3 #define N 100005
4 #define mod 998244353
5 #define ll long long
6 int t,num[11],seed[N];
7 map<int,vector<int> >mat;
8 map<int,vector<int> >::iterator it;
9 int read(){
10 int x=0;
11 char c=getchar();
12 while ((c<'0')||(c>'9'))c=getchar();
13 while ((c>='0')&&(c<='9')){
14 x=x*10+c-'0';
15 c=getchar();
16 }
17 return x;
18 }
19 void write(int x,char c='\0'){
20 while (x){
21 num[++num[0]]=x%10;
22 x/=10;
23 }
24 if (!num[0])putchar('0');
25 while (num[0])putchar(num[num[0]--]+'0');
26 putchar(c);
27 }
28 struct Tree{
29 int n,rt,mx,fa[N],dep[N],sz[N],f[N];
30 vector<int>v[N];
31 bool operator == (const Tree &T)const{
32 return (sz[rt]==T.sz[T.rt])&&(f[rt]==T.f[T.rt]);
33 }
34 void Read(){
35 for(int i=1;i<=n;i++)v[i].clear();
36 for(int i=1;i<=n;i++){
37 int x=read();
38 if (!x)rt=i;
39 else v[x].push_back(i);
40 }
41 }
42 void Write(){
43 for(int i=1;i<n;i++)write(fa[i],' ');
44 write(fa[n],'\n');
45 }
46 void dfs(int k,int s){
47 dep[k]=s,sz[k]=f[k]=1;
48 for(int i=0;i<v[k].size();i++){
49 fa[v[k][i]]=k,dfs(v[k][i],s+1);
50 sz[k]+=sz[v[k][i]];
51 f[k]=(f[k]+(ll)f[v[k][i]]*seed[sz[v[k][i]]])%mod;
52 }
53 }
54 void build(){
55 fa[rt]=0,dfs(rt,0);
56 mx=0;
57 for(int i=1;i<=n;i++)mx=max(mx,dep[i]);
58 }
59 void get(Tree &T,int k,int f){
60 int id=++T.n;
61 T.v[id].clear();
62 if (f)T.v[f].push_back(id);
63 for(int i=0;i<v[k].size();i++)get(T,v[k][i],id);
64 }
65 }A,B,C,X,Y,T,T0;
66 void mul(Tree &A,Tree &B,Tree &T){
67 T.n=A.n*B.n,T.rt=(A.rt-1)*B.n+1;
68 for(int i=1;i<=T.n;i++)T.v[i].clear();
69 for(int i=1;i<=A.n;i++){
70 for(int j=0;j<A.v[i].size();j++)T.v[(i-1)*B.n+1].push_back((A.v[i][j]-1)*B.n+1);
71 for(int j=1;j<=B.n;j++)
72 for(int k=0;k<B.v[j].size();k++)T.v[(i-1)*B.n+j].push_back((i-1)*B.n+B.v[j][k]);
73 }
74 }
75 bool dec(Tree &A,Tree &B,Tree &T){
76 mat.clear();
77 for(int i=0;i<A.v[A.rt].size();i++)mat[A.f[A.v[A.rt][i]]].push_back(A.v[A.rt][i]);
78 T.n=T.rt=1,T.v[1].clear();
79 for(int i=0;i<B.v[B.rt].size();i++){
80 int x=B.f[B.v[B.rt][i]];
81 if (mat[x].empty())return 0;
82 mat[x].pop_back();
83 }
84 for(it=mat.begin();it!=mat.end();it++){
85 vector<int>v=(*it).second;
86 for(int i=0;i<v.size();i++)A.get(T,v[i],1);
87 }
88 return 1;
89 }
90 bool calc(){
91 int pos;
92 for(int i=0;i<=C.n;i++)
93 if (C.dep[i]==C.mx)pos=i;
94 while (C.dep[pos]!=A.mx)pos=C.fa[pos];
95 X.n=0,X.rt=1,C.get(X,pos,0),X.build();
96 if ((ll)A.n*X.n>C.n)return 0;
97 mul(A,X,T),T.build();
98 if (!dec(C,T,T0))return 0;
99 T0.build();
100 for(int i=0;i<=T0.n;i++)
101 if (T0.dep[i]==T0.mx)pos=i;
102 while (T0.dep[pos]!=B.mx)pos=T0.fa[pos];
103 Y.n=0,Y.rt=1,T0.get(Y,pos,0),Y.build();
104 if ((ll)B.n*Y.n!=T0.n)return 0;
105 mul(B,Y,T),T.build();
106 return T==T0;
107 }
108 int main(){
109 srand(time(0));
110 for(int i=0;i<N;i++)
111 for(int j=0;j<60;j++)seed[i]=((seed[i]<<1)+rand()%2)%mod;
112 t=read();
113 while (t--){
114 A.n=read(),B.n=read(),C.n=read();
115 A.Read(),B.Read(),C.Read();
116 A.build(),B.build(),C.build();
117 if (calc()){
118 write(X.n,' '),write(Y.n,'\n');
119 X.Write(),Y.Write();
120 continue;
121 }
122 swap(A,B);
123 if (!calc())printf("Impossible\n");
124 else{
125 write(Y.n,' '),write(X.n,'\n');
126 Y.Write(),X.Write();
127 }
128 }
129 return 0;
130 }

[zoj3990]Tree Equation的更多相关文章

  1. 2017 CCPC Qinhuangdao Site

    A. Balloon Robot 假设机器人$0$时刻位于$0$号位置,那么每个气球所需的时间为$(s_a-b)\bmod m$. 将所有气球按这个时间排序,枚举每个气球的时间作为偏移量,得出最优解即 ...

  2. HDU 2489 Minimal Ratio Tree (DFS枚举+最小生成树Prim)

    Minimal Ratio Tree Time Limit : 2000/1000ms (Java/Other)   Memory Limit : 32768/32768K (Java/Other) ...

  3. HDU 2489 Minimal Ratio Tree 最小生成树+DFS

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  4. Tree - Information Theory

    This will be a series of post about Tree model and relevant ensemble method, including but not limit ...

  5. HDUOJ----2489 Minimal Ratio Tree

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  6. HDU 2489 Minimal Ratio Tree(暴力+最小生成树)(2008 Asia Regional Beijing)

    Description For a tree, which nodes and edges are all weighted, the ratio of it is calculated accord ...

  7. HDU2489 Minimal Ratio Tree 【DFS】+【最小生成树Prim】

    Minimal Ratio Tree Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Other ...

  8. HDU 2489 Minimal Ratio Tree (dfs+Prim最小生成树)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2489 Problem Description For a tree, which nodes and ...

  9. Binary search tree system and method

    A binary search tree is provided for efficiently organizing values for a set of items, even when val ...

随机推荐

  1. nginx负载均衡部署

    1 系统版本 CentOS Linux release 6.0.1708 (Core) 2 编译安装前所需要的准备: 1.GCC编译器 首先检查GCC是否安装,命令:gcc -v ,如果显示有相关版本 ...

  2. Java基础之(六):变量、运算符与JavaDoc

    变量.常量 一.变量的命名规范 首字母只能以字母(A-Z或者a-z)或者美元符($)或者下划线(_)开头,不能以数字开头,首字母之后只能跟字母(AZ或者az)或者数字,不能跟美元符或者下划线 源码 p ...

  3. Sentinel-Go 源码系列(一)|开篇

    大家好呀,打算写一个 Go 语言组件源码分析系列,一是为了能学习下 Go 语言,看下别人是怎么写 Go 的,二是也掌握一个组件. 本次选择了 Sentinel-Go,一是对 Java 版本的 Sent ...

  4. 【UE4】GAMES101 图形学作业1:mvp 模型、视图、投影变换

    总览 到目前为止,我们已经学习了如何使用矩阵变换来排列二维或三维空间中的对象.所以现在是时候通过实现一些简单的变换矩阵来获得一些实际经验了.在接下来的三次作业中,我们将要求你去模拟一个基于CPU 的光 ...

  5. springcloud(二) 微服务架构编码构建

    微服务架构编码构建 1 基础知识 1.1 版本 2 微服务cloud整体聚合父工程Project 2.1 new project 2.2 字符编码设置 utf-8 2.3 pom.xml 2.4 父工 ...

  6. djago后台管理页面

    from django.contrib import admin from blogtest.models import * #修改网页title和站点header.+ admin.site.site ...

  7. Java:异常小记

    Java:异常小记 对 Java 中的 异常 ,做一个微不足道的小小小小记 Error 和 Exception 相同点: Exception 和Error 都是继承了 Throwable 类,在 Ja ...

  8. 第一次Alpha Scrum Meeting

    本次会议为Alpha阶段第一次Scrum Meeting会议 会议概要 会议时间:2021年4月22日 会议地点:北航Inspiration Space咖啡厅 会议时长:1小时 会议内容简介:本次会议 ...

  9. 所驼门王的宝藏(Tarjan)

    题目描述 在宽广的非洲荒漠中,生活着一群勤劳勇敢的羊驼家族.被族人恭称为"先知"的Alpaca L. Sotomon是这个家族的领袖,外人也称其为"所驼门王". ...

  10. C/C++编程笔记:浪漫流星雨表白装b程序

    作为一个未来可能会成为一个专业程序员的小伙们,不知道你们现在学到哪里了,学了点东西之后有没有想在你女朋友面前装个大大的b呢,今天小编就给你一个机会来研究一下下边的代码吧,保证大写的N,当然大佬是排除在 ...