面试官今天想跟你聊聊Java内存模型,这块你了解过吗?

候选者:嗯,我简单说下我的理解吧。那我就从为什么要有Java内存模型开始讲起吧

面试官:开始你的表演吧。

候选者:那我先说下背景吧

候选者:1. 现有计算机往往是多核的,每个核心下会有高速缓存。高速缓存的诞生是由于「CPU与内存(主存)的速度存在差异」,L1和L2缓存一般是「每个核心独占」一份的。

候选者:2. 为了让CPU提高运算效率,处理器可能会对输入的代码进行「乱序执行」,也就是所谓的「指令重排序」

候选者:3. 一次对数值的修改操作往往是非原子性的(比如i++实际上在计算机执行时就会分成多个指令)

候选者:在永远单线程下,上面所讲的均不会存在什么问题,因为单线程意味着无并发。并且在单线程下,编译器/runtime/处理器都必须遵守as-if-serial语义,遵守as-if-serial意味着它们不会对「数据依赖关系的操作」做重排序。

候选者:CPU为了效率,有了高速缓存、有了指令重排序等等,整块架构都变得复杂了。我们写的程序肯定也想要「充分」利用CPU的资源啊!于是乎,我们使用起了多线程

候选者:多线程在意味着并发,并发就意味着我们需要考虑线程安全问题

候选者:1. 缓存数据不一致:多个线程同时修改「共享变量」,CPU核心下的高速缓存是「不共享」的,那多个cache与内存之间的数据同步该怎么做?

候选者:2. CPU指令重排序在多线程下会导致代码在非预期下执行,最终会导致结果存在错误的情况。

候选者:针对于「缓存不一致」问题,CPU也有其解决办法,常被大家所认识的有两种:

候选者:1.使用「总线锁」:某个核心在修改数据的过程中,其他核心均无法修改内存中的数据。(类似于独占内存的概念,只要有CPU在修改,那别的CPU就得等待当前CPU释放)

候选者:2.缓存一致性协议(MESI协议,其实协议有很多,只是举个大家都可能见过的)。MESI拆开英文是(Modified (修改状态)、Exclusive (独占状态)、Share(共享状态)、Invalid(无效状态))

候选者:缓存一致性协议我认为可以理解为「缓存锁」,它针对的是「缓存行」(Cache line) 进行"加锁",所谓「缓存行」其实就是 高速缓存 存储的最小单位。

面试官:嗯...

候选者:MESI协议的原理大概就是:当每个CPU读取共享变量之前,会先识别数据的「对象状态」(是修改、还是共享、还是独占、还是无效)。

候选者:如果是独占,说明当前CPU将要得到的变量数据是最新的,没有被其他CPU所同时读取

候选者:如果是共享,说明当前CPU将要得到的变量数据还是最新的,有其他的CPU在同时读取,但还没被修改

候选者:如果是修改,说明当前CPU正在修改该变量的值,同时会向其他CPU发送该数据状态为invalid(无效)的通知,得到其他CPU响应后(其他CPU将数据状态从共享(share)变成invalid(无效)),会当前CPU将高速缓存的数据写到主存,并把自己的状态从modify(修改)变成exclusive(独占)

候选者:如果是无效,说明当前数据是被改过了,需要从主存重新读取最新的数据。

候选者:其实MESI协议做的就是判断「对象状态」,根据「对象状态」做不同的策略。关键就在于某个CPU在对数据进行修改时,需要「同步」通知其他CPU,表示这个数据被我修改了,你们不能用了。

候选者:比较于「总线锁」,MESI协议的"锁粒度"更小了,性能那肯定会更高咯

面试官但据我了解,CPU还有优化,你还知道吗?

候选者:嗯,还是了解那么一点点的。

候选者:从前面讲到的,可以发现的是:当CPU修改数据时,需要「同步」告诉其他的CPU,等待其他CPU响应接收到invalid(无效)后,它才能将高速缓存数据写到主存。

候选者:同步,意味着等待,等待意味着什么都干不了。CPU肯定不乐意啊,所以又优化了一把。

候选者:优化思路就是从「同步」变成「异步」。

候选者:在修改时会「同步」告诉其他CPU,而现在则把最新修改的值写到「store buffer」中,并通知其他CPU记得要改状态,随后CPU就直接返回干其他事了。等到收到其它CPU发过来的响应消息,再将数据更新到高速缓存中。

候选者:其他CPU接收到invalid(无效)通知时,也会把接收到的消息放入「invalid queue」中,只要写到「invalid queue」就会直接返回告诉修改数据的CPU已经将状态置为「invalid」

候选者:而异步又会带来新问题:那我现在CPU修改完A值,写到「store buffer」了,CPU就可以干其他事了。那如果该CPU又接收指令需要修改A值,但上一次修改的值还在「store buffer」中呢,没修改至高速缓存呢。

候选者:所以CPU在读取的时候,需要去「store buffer」看看存不存在,存在则直接取,不存在才读主存的数据。【Store Forwarding】

候选者:好了,解决掉第一个异步带来的问题了。(相同的核心对数据进行读写,由于异步,很可能会导致第二次读取的还是旧值,所以首先读「store buffer」。

面试官还有其他?

候选者:那当然啊,那「异步化」会导致相同核心读写共享变量有问题,那当然也会导致「不同」核心读写共享变量有问题啊

候选者:CPU1修改了A值,已把修改后值写到「store buffer」并通知CPU2对该值进行invalid(无效)操作,而CPU2可能还没收到invalid(无效)通知,就去做了其他的操作,导致CPU2读到的还是旧值。

候选者:即便CPU2收到了invalid(无效)通知,但CPU1的值还没写到主存,那CPU2再次向主存读取的时候,还是旧值...

候选者:变量之间很多时候是具有「相关性」(a=1;b=0;b=a),这对于CPU又是无感知的...

候选者:总体而言,由于CPU对「缓存一致性协议」进行的异步优化「store buffer」「invalid queue」,很可能导致后面的指令很可能查不到前面指令的执行结果(各个指令的执行顺序非代码执行顺序),这种现象很多时候被称作「CPU乱序执行」

候选者:为了解决乱序问题(也可以理解为可见性问题,修改完没有及时同步到其他的CPU),又引出了「内存屏障」的概念。

面试官:嗯...

候选者:「内存屏障」其实就是为了解决「异步优化」导致「CPU乱序执行」/「缓存不及时可见」的问题,那怎么解决的呢?嗯,就是把「异步优化」给”禁用“掉(:

候选者:内存屏障可以分为三种类型:写屏障,读屏障以及全能屏障(包含了读写屏障),屏障可以简单理解为:在操作数据的时候,往数据插入一条"特殊的指令"。只要遇到这条指令,那前面的操作都得「完成」。

候选者:那写屏障就可以这样理解:CPU当发现写屏障的指令时,会把该指令「之前」存在于「store Buffer」所有写指令刷入高速缓存。

候选者:通过这种方式就可以让CPU修改的数据可以马上暴露给其他CPU,达到「写操作」可见性的效果。

候选者:那读屏障也是类似的:CPU当发现读屏障的指令时,会把该指令「之前」存在于「invalid queue」所有的指令都处理掉

候选者:通过这种方式就可以确保当前CPU的缓存状态是准确的,达到「读操作」一定是读取最新的效果。

候选者:由于不同CPU架构的缓存体系不一样、缓存一致性协议不一样、重排序的策略不一样、所提供的内存屏障指令也有差异,为了简化Java开发人员的工作。Java封装了一套规范,这套规范就是「Java内存模型」

候选者:再详细地说,「Java内存模型」希望 屏蔽各种硬件和操作系统的访问差异,保证了Java程序在各种平台下对内存的访问都能得到一致效果。目的是解决多线程存在的原子性、可见性(缓存一致性)以及有序性问题。

面试官那要不简单聊聊Java内存模型的规范和内容吧?

候选者:不了,怕一聊就是一个下午,下次吧?

本文总结

  • 并发问题产生的三大根源是「可见性」「有序性」「原子性」
  • 可见性:CPU架构下存在高速缓存,每个核心下的L1/L2高速缓存不共享(不可见)
  • 有序性:主要有三方面可能导致打破
    • 编译器优化导致重排序(编译器可以在不改变单线程程序语义的情况下,可以对代码语句顺序进行调整重新排序)
    • 指令集并行重排序(CPU原生就有可能将指令进行重排)
    • 内存系统重排序(CPU架构下很可能有store buffer /invalid queue 缓冲区,这种「异步」很可能会导致指令重排)
  • 原子性:Java的一条语句往往需要多条 CPU 指令完成(i++),由于操作系统的线程切换很可能导致 i++ 操作未完成,其他线程“中途”操作了共享变量 i ,导致最终结果并非我们所期待的。
  • 在CPU层级下,为了解决「缓存一致性」问题,有相关的“锁”来保证,比如“总线锁”和“缓存锁”。
    • 总线锁是锁总线,对共享变量的修改在相同的时刻只允许一个CPU操作。
    • 缓存锁是锁缓存行(cache line),其中比较出名的是MESI协议,对缓存行标记状态,通过“同步通知”的方式,来实现(缓存行)数据的可见性和有序性
    • 但“同步通知”会影响性能,所以会有内存缓冲区(store buffer/invalid queue)来实现「异步」进而提高CPU的工作效率
    • 引入了内存缓冲区后,又会存在「可见性」和「有序性」的问题,平日大多数情况下是可以享受「异步」带来的好处的,但少数情况下,需要强「可见性」和「有序性」,只能"禁用"缓存的优化。
    • “禁用”缓存优化在CPU层面下有「内存屏障」,读屏障/写屏障/全能屏障,本质上是插入一条"屏障指令",使得缓冲区(store buffer/invalid queue)在屏障指令之前的操作均已被处理,进而达到 读写 在CPU层面上是可见和有序的。
  • 不同的CPU实现的架构和优化均不一样,Java为了屏蔽硬件和操作系统访问内存的各种差异,提出了「Java内存模型」的规范,保证了Java程序在各种平台下对内存的访问都能得到一致效果

欢迎关注我的微信公众号【Java3y】来聊聊Java面试,对线面试官系列持续更新中!

【对线面试官-移动端】系列 一周两篇持续更新中!

【对线面试官-电脑端】系列 一周两篇持续更新中!

原创不易!!求三连!!

面试官:为什么需要Java内存模型?的更多相关文章

  1. 求你了,再问你Java内存模型的时候别再给我讲堆栈方法区了…

    GitHub 4.1k Star 的Java工程师成神之路 ,不来了解一下吗? GitHub 4.1k Star 的Java工程师成神之路 ,真的不来了解一下吗? GitHub 4.1k Star 的 ...

  2. 一张图,让你和面试官聊一个小时的“Java内存模型”

    如果面试官问你:你了解 Java 内存模型吗? 你就可以使用这张图,按照这张图中的顺序和面试官开聊,正常情况下,聊一个小时是差不多的,这个时候,对你的处境是非常有益的,因为面试官的时间不多了.

  3. 【并发编程】一文带你读懂深入理解Java内存模型(面试必备)

    并发编程这一块内容,是高级资深工程师必备知识点,25K起如果不懂并发编程,那基本到顶.但是并发编程内容庞杂,如何系统学习?本专题将会系统讲解并发编程的所有知识点,包括但不限于: 线程通信机制,深入JM ...

  4. 面试问题:你了解Java内存模型么(Java7、8、9内存模型的区别)

    Java内存模型是每个java程序员必须掌握理解的,这是Java的核心基础,对我们编写代码特别是并发编程时有很大帮助.由于Java程序是交由JVM执行的,所以我们在谈Java内存区域划分的时候事实上是 ...

  5. 深入理解JVM(6)——Java内存模型和线程

    Java虚拟机规范中定义了Java内存模型(Java Memory Model,JMM)用来屏蔽掉各种硬件和操作系统的内存访问差异,以实现让Java程序在各种平台下都能达到一致的内存访问效果(“即Ja ...

  6. 【JVM】JVM内存结构 VS Java内存模型 VS Java对象模型

    原文:JVM内存结构 VS Java内存模型 VS Java对象模型 Java作为一种面向对象的,跨平台语言,其对象.内存等一直是比较难的知识点.而且很多概念的名称看起来又那么相似,很多人会傻傻分不清 ...

  7. Java内存模型(JMM)详解

    在Java JVM系列文章中有朋友问为什么要JVM,Java虚拟机不是已经帮我们处理好了么?同样,学习Java内存模型也有同样的问题,为什么要学习Java内存模型.它们的答案是一致的:能够让我们更好的 ...

  8. Java内存模型相关原则详解

    在<Java内存模型(JMM)详解>一文中我们已经讲到了Java内存模型的基本结构以及相关操作和规则.而Java内存模型又是围绕着在并发过程中如何处理原子性.可见性以及有序性这三个特征来构 ...

  9. 硬件内存模型到 Java 内存模型,这些硬核知识你知多少?

    Java 内存模型跟上一篇 JVM 内存结构很像,我经常会把他们搞混,但其实它们不是一回事,而且相差还很大的,希望你没它们搞混,特别是在面试的时候,搞混了的话就会答非所问,影响你的面试成绩,当然也许你 ...

随机推荐

  1. ARP协议工作原理实验

    一.实验目的 验证"在向目的主机发送数据包时会先查询ARP高速缓存,如果ARP高速缓存中已保存了目的主机的MAC地址,不进行ARP查询,使用ARP高速缓存中的MAC地址:如果缓存中没有IP对 ...

  2. go defer关键字使用规则

    defer 用于延迟函数的调用,每次defer都会把一个函数压入栈中,函数返回前再把延迟的函数取出并执行 数据结构 type _defer struct { sp uintptr //函数栈指针 pc ...

  3. vue3.0入门(一)

    前言 最近在b站上学习了飞哥的vue教程 学习案例已上传,下载地址 使用方式 使用在线cdn 下载js文件并自托管,引入到项目后使用 使用npm安装后,用cli来构建项目 声明式渲染 Vue2需引入v ...

  4. 阿里云服务器上部署java项目(安装jdk,tomcat)

    安装JDK a.执行下面的yum指令安装,无线配置环境变量. 1.yum -y update #首先更新一下YUM源2.yum list Java* ---------#列出所有的JDK 3.yum ...

  5. MVC模式职责分工及学习路上的一些感想

    在正文之前想先说说自己coding道路上的一点感想,不得不感慨一下时间过得很快,之前写过一篇关于JavaWeb_MVC模式的一篇博客,转眼之间时间已经过去了两个月,那时候还是一个刚刚接触JavaWeb ...

  6. vue post 请求 是 request payload 而不是 FromData ,以及 格式转换成 FromData 需要的 key value 格式

    export function 方法名字(传进来要给后端的参数){     return request({         url : ' 后端提供的接口路径  ',         method  ...

  7. css文本溢出省略号大总结,如你所愿

    一行: white-space: nowrap; text-overflow: ellipsis; overflow: hidden; word-break: break-all; 两行: width ...

  8. C# 爬虫框架实现 流程_各个类开发

    目录链接:C# 爬虫框架实现 概述 对比通用爬虫结构,我将自己写的爬虫分为五个类实现: Spider主类:负责设置爬虫的各项属性 Scheduler类:负责提供URL到下载类,接收URL并做去重 Do ...

  9. 20210809 Merchant,Equation,Rectangle

    做过,但当时咕了 T3 Merchant 先特判 \(t=0\),之后斜率一定会起作用. 考虑最终选择的物品集合,它们的斜率和一定大于 \(0\),因此答案具有单调性,可以二分. 实现的时候注意细节 ...

  10. Openswan支持的算法及参数信息:

    数据封装加密算法: algorithm ESP encrypt: id=2, name=ESP_DES, ivlen=8, keysizemin=64, keysizemax=64 algorithm ...