Star Way To Heaven
题目描述
小 x伤心的走上了 Star way to heaven。
到天堂的道路是一个笛卡尔坐标系上一个 n*m的长方形通道 顶点在0,0 和 。
小 n,m 从最左边任意一点进入,从右边任意一点走到天堂,最左最右的距离n为 ,上下边界距离m为 。
其中长方形有 k个 ,每个k 都有一个整点坐标,star的大小可以忽略不计。
每个star 以及长方形上下两个边缘宇宙的边界都有引力,所以为了成功到达 小w 离他们越远越好。
请问小w走到终点的路径上,距离所有星星以及边界的最小距离最大值可以为多少?
输入格式
一行三个整数 。
接下来k行,每行两个整数 表示一个点的坐标。
输出格式
一行一个数表示答案。保留到小数点后9位。
样例
样例输入
10 5 2
1 1
2 3
样例输出
1.118033989
首先,我们要先简化题目
给出一个个星星,以某一个半径,封住一列,使其变为两部分,求这个半径最小为多少
题目分析
我们可以二分ans,然后用dfs或bfs来进行判断,但是,实际上,用这个方法会超时
于是,我们可以换一个思路,其实,我们可以从最上面为起点,构造最小生成树,如果说,
一个点的半径能够触碰到最下面,那就说明,已经成功封闭了
那具体该如何操作呢?
这里不能用常用的kruskal,而是用比较冷门的prim,首先,每一个初始值为每一个点到最上面的距离,然后取出最小的也就是离上面最近的,然后,用这一个点,更新每一点的最低值,其中,算出最大值即可
哪有什么时候结束呢,我们可以在开一个,为最上面到最下面的最小值,如果说,这个值被选中了,就说明已经被封闭来,直接输出即可,但是求的是半径,所以要/2
疑问?m不该是列吗,为什么变成来上下边界距离m
#include<bits/stdc++.h>
using namespace std;
int n;
double m;
int k;
double x[10005];
double y[10005];
double dist[100005];
int vis[10005];
double js(double x1,double y1,double x2,double y2)
{
return sqrt((x1-x2)*(x1-x2)+(y1-y2)*(y1-y2));
}
int main()
{
scanf("%d %lf %d",&n,&m,&k);
for(int i=1;i<=k;i++)
{
scanf("%lf %lf",&x[i],&y[i]);
}
for(int i=1;i<=k;i++)
{
dist[i]=m-y[i];
}
dist[k+1]=m;
double ans=-1;
dist[0]=1000000;
for(int j=1;j<=k+1;j++)
{
int mq=0;
for(int i=1;i<=k+1;i++)
{
if(!vis[i]&&dist[i]<dist[mq]){
mq=i;
}
}
ans=max(dist[mq],ans);
if(mq==k+1)
{
printf("%.9lf",ans/2);
return 0;
}
for(int i=1;i<=k;i++)
{
dist[i]=min(dist[i],js(x[i],y[i],x[mq],y[mq]));
}
dist[k+1]=min(dist[k+1],y[mq]);
vis[mq]=1;
}
}
Star Way To Heaven的更多相关文章
- [CSP-S模拟测试]:Star Way To Heaven(最小生成树Prim)
题目描述 小$w$伤心的走上了$Star\ way\ to\ heaven$. 到天堂的道路是一个笛卡尔坐标系上一个$n\times m$的长方形通道(顶点在$(0,0)$和$(n,m)$),小$w$ ...
- 7.15考试总结(NOIP模拟16)[Star Way To Heaven·God Knows·Lost My Music]
败者死于绝望,胜者死于渴望. 前言 一看这个题就来者不善,对于第一题第一眼以为是一个大模拟,没想到是最小生成树. 对于第二题,先是看到了状压可以搞到的 20pts 然后对着暴力一顿猛调后来发现是题面理 ...
- NOIP模拟16:「Star Way To Heaven·God Knows·Loost My Music」
T1:Star Way To Heaven 基本思路: 最小生成树. 假如我们将上边界与下边界看作一个点,然后从上边界经过星星向下边界连边,会发现,他会形成一条线将整个矩形分为左右两个部分. ...
- 题解 Star Way To Heaven
传送门 这整场都不会--这题想二分不会check 其实check很好写,考虑一个mid的实际意义 即为check在不靠近每个star及边界mid距离内的前提下,能不能到达\((n,m)\) 其实可以转 ...
- 20190817-T1-LOJ6322「雅礼国庆 2017 Day6」Star Way To Heaven
写这篇题解是因为作者太蒻已经忘了最小生成树了. <题面> 这个题还真是想不到最小生成树. $80\%$算法 复杂度:$\Theta(k^2 \log N )$ 用了二分答案(明显答案具有单 ...
- 「模拟8.17」star way to heaven(并查集,最小生成树)
80分打法 首先二分最后答案,答案即为r,可看作以每个k为圆心r为半径的圆 我们进行并查集维护,维护相交的圆的边界 最后判断是否存在圆将上下边界覆盖,如有证明不行 1 #include<iost ...
- NOIP 模拟 $16\; \rm Star Way To Heaven$
题解 \(by\;zj\varphi\) 看懂题!!! 从最左穿到最右,一定会经过两个星星之间或星星和边界之间,那么我们穿过时当前最优一定是走中点 而我们要求最小的距离最大,那么我们将所有星星和边界( ...
- NOIP模拟测试24「star way to hevaen·lost my music」
star way to heaven 题解 大致尝试了一下并查集,记忆化搜索,最小生成树 最小生成树是正解,跑最小生成树然后找到最大的值 欧几里德距离最小生成树学习 prim楞跑 至于为什么跑最小生成 ...
- NOIP模拟 24
连续爆炸的开端. 从这一场开始我没状态了 T1 star way to heaven 受强降雨boboQQQ影响,我一直认为这是一道和凸包有关的计算几何题 很快就弃了,除了期望没做过带实数的题,所以吓 ...
随机推荐
- java-阿里邮件推送服务开发 -- 发送邮箱验证码
参考文档: 如何在 DNS 服务器上配置域名:https://help.aliyun.com/knowledge_detail/39397.html?spm=5176.2020520150.102.d ...
- 添加用户的jsp页面
<%@ page contentType="text/html;charset=UTF-8" language="java" %><!-- H ...
- XML名命空间
XML的名命空间就类似于java的包,命名空间定义:xmlns:***="URI",默认命名空间定义:xmlns="URI" 引号中的URl内容用来唯一标识命名 ...
- Centos 常用指令
1.*.tar 用 tar xvf 解压 2.*.gz 用 gzip d或者gunzip 解压 3.*.tar.gz和*.tgz 用 tar xzf 解压 4.*.bz2 用 bzip2 d或者用 ...
- macOS Monterey 12.1 (21C52) 正式版 ISO、IPSW、PKG 下载
本站下载的 macOS Monterey 软件包,既可以拖拽到 Applications(应用程序)下直接安装,也可以制作启动 U 盘安装,或者在虚拟机中启动安装. 2021 年 12 月 14 日, ...
- 分布式调用链跟踪工具Jaeger?两分钟极速体验
欢迎访问我的GitHub https://github.com/zq2599/blog_demos 内容:所有原创文章分类汇总及配套源码,涉及Java.Docker.Kubernetes.DevOPS ...
- Python中冷门但非常好用的内置函数
Python中有许多内置函数,不像print.len那么广为人知,但它们的功能却异常强大,用好了可以大大提高代码效率,同时提升代码的简洁度,增强可阅读性 Counter collections在pyt ...
- 【web】sqli-labs学习
第一页 1~4预备知识(基于错误的注入) 几个常用函数: 1. version()--MySQL 版本 2. user()--数据库用户名 3. database()--数据库名 4. @@dat ...
- MySQL 分区表,为什么分区键必须是主键的一部分?
随着业务的不断发展,数据库中的数据会越来越多,相应地,单表的数据量也会越到越大,大到一个临界值,单表的查询性能就会下降. 这个临界值,并不能一概而论,它与硬件能力.具体业务有关. 虽然在很多 MySQ ...
- java 图形化小工具Abstract Window Toolit 常用组件:对话框Dialog FileDialog
对话框 Dialog是Window类的子类,是1个容器类,属于特殊组件,对话框是可以独立存在的顶级窗口,因此用法与普通窗口的用法几乎完全一样.但对话框有如下两点需要注意. (1),对话框通常依赖于其他 ...