题面传送门

u1s1 这种题目还是相当套路的罢

首先看到 \(\gcd\) 可以套路地往数论方向想,我们记 \(f_i\) 为满足边权的 \(\gcd\) 为 \(i\) 的倍数的所有生成树的权值之和,\(g_i\) 为边权的 \(\gcd\) 恰好为 \(i\) 的所有生成树的权值之和,那么显然 \(f_i=\sum\limits_{i\mid j}g_j\),莫反一下可得 \(g_i=\sum\limits_{i\mid j}f_i\mu(\dfrac{j}{i})\),因此我们只需求出 \(f_i\) 即可求出 \(g_i\) 及最终的答案。

接下来考虑怎样求 \(f_i\),我们考虑原图 \(G\) 中边权为 \(i\) 的倍数的边组成的子图 \(G'\),那么 \(f_i\) 等价于 \(G'\) 所有生成树的边权之和,看到生成树计数这类题目我们很自然地可以想到 Matrix-Tree 定理。不过一般来说 Matrix-Tree 定理解决的是求所有生成树边权乘积之和,而此题要求的是所有生成树边权之和,这里有一个烂大街但我觉得挺妙的套路,我们将所有边的边权看作一个一次函数 \(y=1+wx\),那么显然这个边权和就是生成树上所有一次函数乘积的一次项,这显然是可以 Matrix-Tree 的。不过问题又来了,再求矩阵行列式的过程中涉及加减乘除运算,怎样定义这些运算呢?首先由于我们只关心最终函数的一次项,因此我们可以将所有运算放在 \(\bmod x^2\) 意义下进行,加减法就直接加就行了,乘法就稍微用下分配律,\((a+bx)(c+dx)=ac+(ad+bc)x\),除法稍微有点麻烦,不过学过多项式的比较好理解,首先 \(\dfrac{a+bx}{c+dx}\) 的常数项必须是 \(\dfrac{a}{c}\),因为只有 \(\dfrac{a}{c}\) 乘上 \(c+dx\) 后常数项才能得到 \(a\),代入待定系数法算一下也可得到一次项是 \(\dfrac{bc-ad}{c^2}\),即 \(\dfrac{a+bx}{c+dx}=\dfrac{a}{c}+\dfrac{bc-ad}{c^2}x\),写个结构体维护一下即可。

这样暴力复杂度是 \(wn^3\) 的,可能有卡常的风险,保险起见我们加上一个小小的优化,就是如果边权为 \(i\) 的倍数的边数 \(<n-1\) 那么直接令 \(f_i=0\),因为不可能存在生成树,加了这个优化以后复杂度显然变成了 \(\dfrac{md(w_i)}{n-1}n^3\),即可通过此题。

然鹅我又搞错模数了所以 WA 了一次

const int MAXM=435;
const int MAXN=30;
const int MAXV=152505;
const int MOD=998244353;
int qpow(int x,int e){
int ret=1;
for(;e;e>>=1,x=1ll*x*x%MOD) if(e&1) ret=1ll*ret*x%MOD;
return ret;
}
int n,m,u[MAXM+5],v[MAXM+5],w[MAXM+5];
vector<int> eds[MAXV+5];
int mu[MAXV+5],pr[MAXV/6+5],prcnt=0;
bitset<MAXV+5> vis;
void sieve(int mx){
mu[1]=1;
for(int i=2;i<=mx;i++){
if(!vis[i]){pr[++prcnt]=i;mu[i]=-1;}
for(int j=1;j<=prcnt&&pr[j]*i<=mx;j++){
vis[pr[j]*i]=1;
if(i%pr[j]==0) break;
else mu[pr[j]*i]=-mu[i];
}
}
}
struct line{
int x,y;
line(int _x=0,int _y=0):x(_x),y(_y){}
line operator +(const line &rhs){return line((x+rhs.x)%MOD,(y+rhs.y)%MOD);}
line operator -(const line &rhs){return line((x-rhs.x+MOD)%MOD,(y-rhs.y+MOD)%MOD);}
line operator *(const line &rhs){return line(1ll*x*rhs.x%MOD,(1ll*x*rhs.y+1ll*y*rhs.x)%MOD);}
line operator /(const line &rhs){int iv=qpow(rhs.x,MOD-2);return line(1ll*x*iv%MOD,1ll*iv*iv%MOD*
((1ll*y*rhs.x%MOD-1ll*x*rhs.y%MOD+MOD)%MOD)%MOD);}
};
line a[MAXN+5][MAXN+5];
int f[MAXV+5],g[MAXV+5];
int main(){
scanf("%d%d",&n,&m);sieve(MAXV);
for(int i=1;i<=m;i++){
scanf("%d%d%d",&u[i],&v[i],&w[i]);
for(int j=1;j*j<=w[i];j++) if(w[i]%j==0){
eds[j].pb(i);if(w[i]/j!=j) eds[w[i]/j].pb(i);
}
}
for(int i=1;i<=MAXV;i++){
if(eds[i].size()<n-1) continue;
for(int j=1;j<n;j++) for(int k=1;k<n;k++)
a[j][k]=line(0,0);
for(int j=0;j<eds[i].size();j++){
int eid=eds[i][j];//printf("%d\n",eid);
int U=u[eid]-1,V=v[eid]-1;
a[U][V]=a[U][V]-line(1,w[eid]);
a[V][U]=a[V][U]-line(1,w[eid]);
a[U][U]=a[U][U]+line(1,w[eid]);
a[V][V]=a[V][V]+line(1,w[eid]);
} int sgn=1;
for(int j=1;j<n;j++){
int t=j;
for(int k=j+1;k<n;k++) if(a[k][j].x) t=k;
if(t!=j) sgn=-sgn;
for(int k=j;k<n;k++) swap(a[t][k],a[j][k]);
line iv=line(1,0)/a[j][j];
for(int k=j+1;k<n;k++){
line mul=line(0,0)-a[k][j]*iv;
for(int l=j;l<n;l++) a[k][l]=a[k][l]+mul*a[j][l];
}
} line ret=line((sgn+MOD)%MOD,0);
for(int j=1;j<n;j++) ret=ret*a[j][j];
f[i]=ret.y;
// printf("%d %d\n",i,f[i]);
} int ans=0;
for(int i=1;i<=MAXV;i++){
for(int j=i;j<=MAXV;j+=i) g[i]=(0ll+g[i]+1ll*f[j]*mu[j/i]+MOD)%MOD;
ans=(ans+1ll*g[i]*i)%MOD;
} printf("%d\n",ans);
return 0;
}
/*
4 5
1 2 6
1 3 8
1 4 9
2 3 12
3 4 18
*/

洛谷 P6624 - [省选联考 2020 A 卷] 作业题(矩阵树定理+简单数论)的更多相关文章

  1. 洛谷P6623——[省选联考 2020 A 卷] 树

    传送门:QAQQAQ 题意:自己看 思路:正解应该是线段树/trie树合并? 但是本蒟蒻啥也不会,就用了树上二次差分 (思路来源于https://www.luogu.com.cn/blog/dengy ...

  2. [题解] LOJ 3300 洛谷 P6620 [省选联考 2020 A 卷] 组合数问题 数学,第二类斯特林数,下降幂

    题目 题目里要求的是: \[\sum_{k=0}^n f(k) \times X^k \times \binom nk \] 这里面出现了给定的多项式,还有组合数,这种题目的套路就是先把给定的普通多项 ...

  3. luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理)

    luoguP6624 [省选联考 2020 A 卷] 作业题(莫比乌斯反演,矩阵树定理) Luogu 题外话: Day2一题没切. 我是傻逼. 题解时间 某种意义上说刻在DNA里的柿子,大概是很多人学 ...

  4. 洛谷 P7520 - [省选联考 2021 A 卷] 支配(支配树)

    洛谷题面传送门 真·支配树不 sb 的题. 首先题面已经疯狂暗示咱们建出支配树对吧,那咱就老老实实建呗.由于这题数据范围允许 \(n^2\)​ 算法通过,因此可以考虑 \(\mathcal O(n^2 ...

  5. 洛谷 P7515 - [省选联考 2021 A 卷] 矩阵游戏(差分约束)

    题面传送门 emmm--怎么评价这个题呢,赛后学完差分约束之后看题解感觉没那么 dl,可是现场为啥就因为种种原因想不到呢?显然是 wtcl( 先不考虑"非负"及" \(\ ...

  6. [省选联考 2020 A 卷] 组合数问题

    题意 [省选联考 2020 A 卷] 组合数问题 想法 自己在多项式和数论方面还是太差了,最近写这些题都没多少思路,看完题解才会 首先有这两个柿子 \(k*\dbinom{n}{k} = n*\dbi ...

  7. luoguP6623 [省选联考 2020 A 卷] 树(trie树)

    luoguP6623 [省选联考 2020 A 卷] 树(trie树) Luogu 题外话: ...想不出来啥好说的了. 我认识的人基本都切这道题了. 就我只会10分暴力. 我是傻逼. 题解时间 先不 ...

  8. luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数)

    luoguP6620 [省选联考 2020 A 卷] 组合数问题(斯特林数) Luogu 题外话: LN切这题的人比切T1的多. 我都想到了组合意义乱搞也想到可能用斯特林数为啥还是没做出来... 我怕 ...

  9. 洛谷 P7516 - [省选联考 2021 A/B 卷] 图函数(Floyd)

    洛谷题面传送门 一道需要发现一些简单的性质的中档题(不过可能这道题放在省选 D1T3 中偏简单了?) u1s1 现在已经是 \(1\text{s}\)​ \(10^9\)​ 的时代了吗?落伍了落伍了/ ...

随机推荐

  1. 如何在印刷品中使用遵循SIL Open Font License协议的字体

    如何在印刷品中使用遵循SIL Open Font License协议的字体 昨天在知乎看到了一个问题,( 如何在设计中声明字体开源许可证? - 知乎 (zhihu.com),恰好最近在研究一些开源协议 ...

  2. 【UE4 调试】提升UE4源码版本Setup下载速度

    更改setup.bat部分参数

  3. 关于java socket中的read方法阻塞问题

    客户端: public class TCPClient { public static void main(String[] args) throws IOException { FileInputS ...

  4. 5.29日 Scrum Metting

    日期:2021年5月29日 会议主要内容概述:人员调整,xyl同时兼顾前后端:确定表格缩放策略和新图表添加:强调任务分配,总结工作. 一.进度情况## 组员 负责 两日内已完成的工作 后两日计划完成的 ...

  5. Linux基础是零基础必须要过的关,你懂了多少

    #LINUX基础学习 ##命令行下的基础知识 Linux区分英文的大小写. date :查看时间 cal:查看日历 [Tab] 热键 :可以自动补全命令名和文件名 [Ctrl]+C 热键 :可以中断正 ...

  6. Veritas Backup Exec™ 21.3 Multilingual (Windows)

    Backup Exec 21.3, Release date: 2021-09-06 请访问原文链接:https://sysin.org/blog/veritas-backup-exec-21-3/, ...

  7. 微软认真聆听了开源 .NET 开发社区的炮轰: 通过CLI 支持 Hot Reload 功能

    微软近日激怒了开源.NET社区,起因是它删除了开源.NET的一项旗舰功能,以提升Visual Studio 的吸引力,尤其是针对与Visual Studio颇有渊源的跨平台源代码编辑器Visual S ...

  8. 奇偶位交换 牛客网 程序员面试金典 C++ Python

    奇偶位交换 牛客网 程序员面试金典 C++ Python 题目描述 请编写程序交换一个数的二进制的奇数位和偶数位.(使用越少的指令越好) 给定一个int x,请返回交换后的数int. 测试样例: 10 ...

  9. 最接近的数 牛客网 程序员面试金典 C++ Python

    最接近的数 牛客网 程序员面试金典 C++ Python 题目描述 有一个正整数,请找出其二进制表示中1的个数相同.且大小最接近的那两个数.(一个略大,一个略小) 给定正整数int x,请返回一个ve ...

  10. hdu 4771 Stealing Harry Potter's Precious (BFS+状压)

    题意: n*m的迷宫,有一些格能走("."),有一些格不能走("#").起始点为"@". 有K个物体.(K<=4),每个物体都是放在& ...